
 >

Goate: An infrastructure for new Web linking

Duncan Martin

Department of Computer Science and
IT

University of Nottingham
Jubilee Campus

Nottingham

djm@cs.nott.ac.uk

Helen Ashman

Department of Computer Science and
IT

University of Nottingham
Jubilee Campus

Nottingham

hla@cs.nott.ac.uk

Overview < >

This presentation covers:
Low and high level linking
Benefits of proxying
Goate architecture
Link presentation

HTML v XLink < >

HTML linking trails XLink in three ways:
Links are uni-directional, not bi-directional
Links are single, not multi-headed
Only top-of-documents and fixed points can be
referenced

Low level linking < >

We define a 'low level' linking language as having
the following abilities:

Move from one document to another
Specify where in the destination to navigate to
Create links visible in the destination document

Low level linking < >

HTML meets this definition with the caveats:
In-page destination point for the 2nd clause is
pre-declared
Writing <a href> links into the destination is
allowed

Low level linking < >

Low level linking is important as it allows us to
build more advanced linking behaviours.

This is analogous to the relationship between low
and high level programming languages.

Low level programming languages are capable of
all the same tasks as high level languages.

Emulating high level linking < >

Higher-level behaviours can be emulated in
HTML:

Multi-headed links as a collection of
single-headed links
Bi-directional links as a pair of uni-directional
links
Flexible destination specification by placing
in-page anchors in the destination document

Introducing Goate < >

Goate is a system that acts as a translator
between high-level link specifications and HTML.

Goate operates as a HTTP proxy.

HTTP proxying < >

Without proxy

HTTP proxying < >

With proxy

Why a proxy? < >

Working a proxy has these advantages:
No tie to browser or server platform
Can intercept all communication
Solves write-access problem

Goate architecture < >

Goate is written in ANSI C and runs under UNIX.

n copies are forked at startup.

Interfaces with SQL database (PostgreSQL).

Goate architecture < >

Language modules < >

The intepretation/semantic understanding of
linking languages is done by language modules.

Modules linked into the system at run-time.

In the case of bi-directional links, and/or links with
an in-page destination the module stores the
end-point details in the database.

Goate architecture < >

Add end-points and back links < >

The document we're processing may be the
destination for other pages.

We need to add the in-page locators and the
backwards part of bi-directional links.

A query is done on the link database looking for
occurrences where 'destination page' is the
current page.

Goate architecture < >

Link rendering < >

Links in the document are converted into HTML.

Sections with overlapping links are rendered as
multi-headed.

Precise code tailored to browser in use.

Link presentation < >

Links are rendered with background shading.

Different colours differentiate between:
Forwards and backwards links
Single-headed and multi-headed links.

Link presentation < >

Mozilla screenshot

Goate architecture < >

Future work < >

Future work includes:
Finish coding 'feature complete' version
Publish a stable API for language modules, with
full documentation
Write interesting language modules

 <

Any questions?

www.goate.org

