Modelling Hypermedialmplementation
and Node-lessHypermedia

by Duncan Martin, BSc

Thesissubmitted to The University of Nottingham
for the degree of Doctor of Philosophy, May 2005

Contents

1 Intr oduction

1.1
1.2
1.3

Hypermediaoverview
Reseach focus
Structure of the work

2 Hyper media behaviours and experiences

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29

Overview

Terminology

Nodes

Link structures

Link actions

Anchors & Spans
Triggers

Composites& Documents
Open Hypermedia

2.10 Conclusion

3 Modelling hypermedia implementation

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Overview
Relatedwork
High/low model
Nottingham model
SLIPA

Meles

Conclusion

4 Goate

4.1
4.2
4.3
4.4
4.5

Development history
Development

Goate architecture
Operation asaHTTP proxy
Retrievemodules

(200 SN el

11
12
18
22
31
38
46
50

51
51
52
60
63
66
76
105

106
106
111
118
125
133

CONTENTS

4.6 Join modules

4.7 Languagemodules
4.8 Environment modules
4.9 Optimisation

4.10 Conclusion

5 Atomic Hyper media
5.1 Intr oduction
5.2 Atomic Data Structure
5.3 Atomic Hypermedia
5.4 ZigZag
5.5 Conclusion

6 Hedgehog
6.1 Overview
6.2 Datatypes
6.3 Structure
6.4 Filter
6.5 Orderings
6.6 Conditionals
6.7 Altering content
6.8 Standad functions
6.9 Examples
6.10 Conclusion

7 Conclusion
7.1 Modelling hypemediaimplementation
7.2 Node-lesshypemedia
7.3 Further work

References

A Published work

134
135
142
146
147

149
149
151
161
170
173

174
174
175
179
184
191
199
200
201
202
209

211
211
213
214

216

226

Abstract

This thesisaddresseseveralareasin the eld of hypemediareseach. First the core
conceptsof hypemedia, nodes, links etc. are examinedand in eachcaseexistingwork
is considered along with new conceptsin order to form a standadisedtoolkit.

Secondly the modelling of hypemediaimplementation is considesed. In this sec-
tion the developmentof a modelling schemeis traced and the advantagesand disad-
vantagesof eachapproachare discussed.

Thirdly, a particular systembasedon these models, Goate, is introduced. The
design, usefulnessand drawbacksof Goate are discussed.Some examplesof linking
speci cationsimplemented with Goate are given and discussed.

Fourthly, an entirely different way of modelling hypemedia that doesn't rely on
the concept of a node is introduced. This approach, named Atomic Hypermedia, is
basedaround the single data construct of an atom, where eachatom holds a single
character

Lastly, a languagenamed Hedgehog is introduced which is designedfor the ma-
nipulation of Atomic Hypermedia. This sectiondetailsthe motivation and structure
of Hedgehog, aswell asproviding examplesof operationson Atomic Hypermedia.

Acknowledgements

| would like to thank my supewisor, Helen Ashman,for commentsand suggestions
throughout my reseach. Also, the membersof the Web Technology Reseach Group
aswell asother reseach groups at Nottingham University for their contributions in
discussionsand shaed knowledge. | would alsolike to acknowledgemy parents for
their support throughout my education and all the authors of the freely provided
software I've relied on throughout my reseach.

| would particularly like to single-out for thanks SarahByrne, not only for putting
up with me during my writing-up phasebut alsofor hertir elesgroof-readingthrough-
out my reseach. Thesethanksshould be extendedby anyonewho readssomething
I've authored.

This work wasfunded by the EPSRC,grant number 20164.

To my parents.

Vi

CHAPTER 1

INTRODUCTION

1.1 Hyper media overview

Hypertext asa conceptwas rst proposedby VannevarBushin “As we may think”
[17]. In this now classicwork Bush takesa forward-looking approachto the devel-
opment of information technology. Although some predictions havenot come true,
such asthe widespread home useof micro Im, the work is notable for the concepts
that it introduces.In the article Bush describeghe "'memex":

“A memexis adevicein which anindividual storeshis books, records, and
communications, and which is mechanisedso that it may be consulted
with exceedingspeedand exibility . It isanenlamged intimate supplement
to hismemory.”

Bush introducesthe idea of "associatedstorage’ where items in the memex can
be “tied' or 'linked' together, representingsome semanticconnection. Furthermore,
the path of links taken by a userthroughout the memex, or “trail', canbe stored and
recalled.Bushtoucheson other issuessuchasannotation and sharing of infor mation
with other users.The conceptsintr oduced here havepersistedin hypemediareseach
to this day

Although Bushintroduced many of the core ideasof hypertext, it wasNelsonwho
introduced the term itself. In “Complex information processing:a le structure for
the complex, the changingand the indeterminate” [74] Nelson states:

“Let me introduce the word "hypertext' to mean a body of written or
pictorial material interconnectedin sucha complex way that it could not

1. INTRODUCTION 2

conveniently be presentedor representedon paper It may contain sum-
maries, or maps of its contents and their interrelations; it may contain
annotations, additions and footnotes from scholarswho have examined
it.”

Theodore Nelson's de nition of hypertext includes non-text media such aspic-
tures. The term "hypemedia’ is alsooriginally coined by Nelsonin [74]:

“Films, sound recordings, and video recordings are alsolinear strings, ba-
sically for mechanicalreasons. But these, too, can now be arranged as
non-linear systems— for instance,lattices— for editing purposes,or for
displaywith different emphasis.... The hyperlm — abrowsableor vari-
sequencedmovies— is only one of the possiblehypemediathat require
our attention.”

In this thesisthe terms "hypertext' and "hypemedia' are considered to be inter-
changeable,although the term "hypemedia’ is prefered asthe focusis on working
with variousmediatypes.

1.1.1 Hypermediadomains

Sincethe earlywork of Bushand Nelson hypemediareseach hasprogressedn several
directions. Somereseach hasfollowed the conceptsjust discussed.and focuseson
explicit associativeeonnectionsbetweenparts of a mediastore. Other work hasbeen
quite different in conceptbut hasbeenacceptedunder the bannerterm of hyperntext
or hypemedia. Before the scopeof this work can be accuratelydiscussedt is rst
necessarto considerthe ‘domains' of hypemedia.

1.1.1.1 Navigational hypemedia

Navigational hypemediais the domain of hypemediabearing closestresemblanceo
the ideasof Bush and Nelson. In this domain there is a store of media, the items
of which canbe joined, or ‘linked’ together in someway Activating the links affects
the user's view' onto the hypemedia. A common behaviour is that activating a
link would move the view onto the hypemedia from one point to another. Other
behavioursthat are included in the navigational domain are the inclusion, removal

1. INTRODUCTION 3

or replacementof part of the view Thesebehavioursare discussedurther in section
X2.5.

1.1.1.2 Sculptural hypemedia

Sculpturalhypemediais a variation of navigationalhypemedia. Traditionally in nav-
igational hypemedia nodesare not connectedby default but explictly connectedby
the creation of links. In Sculpturalhypemediaall nodesare connectedby default and
then connectionsare removedto form the resultin the manner of an artist creating
a sculpture by removing unwanted material. Two papersbasedaround this ideawere
presentedin the 2001 Hypertext conference,[10] and [98]. The term “sculptural
hypertext' wascoined by [10] and hasbeenthe term that haspersisted.

1.1.1.3 Spatial hypetext

In Spatialhypertext connectionsbetweennodesare not expressedoy the de ning of
links, but rather the relative spatialpositions of nodes, and visualcues. For example,
acommon colour appliedto setof nodeswould imply a connection, aswould placing
the nodes next to one another or overlapping them. A key phrasehere is “imply’,
as connections between nodes are implied by the user and not speci ed explicitly.
Severalspatial hypertext systemshave been developedsuch asART#001 [104] and
VKB [87].

Spatialhypertext “is mostappropriate whenthere is no distinction betweerreaders
and writers” [60].

1.1.1.4 Taxonomichypemedia
A usefulde nition of Taxonomic hypemediais:

“T raditionally, hypemediaisimplementedaccoding to aconceptualmodel
basedon graphtheory. That is, the userthinks of the infor mation asstored
at the nodesof agraph, and movesfrom one node to the next over edges
of the graph. This conceptualmodel is appropriate for knowledge tasks
in which one node explains,ampli es, or otherwise elucidatesanother.
... For another kind of knowledge task a different conceptual model is

1. INTRODUCTION 4

more appropriate, amodel basedon settheory. This model facilitatesma-
nipulation of collectionsof similar nodesthat are assignedo one or more
sets.Usersmove from one node to anotherin the sameset,and from one
setto another by way of nodesin the intersection of those sets. They do
not think of nodesaslinked directly to one another, but in terms of the
setsto which they belong.” [94]

Taxonomic hypemedia allows categorisationand sub-categorisationof nodes(or
“artifacts’) [69]. Additionally, “perspectivesmay be de ned, for exampleunder per-
spectiveA an artifact appearsunder categoty Y whilst under perspectiveB the artifact
appearsunder categoly Z.

1.2 Reseach focus

The focusof this work isthe implementation of systemselating to navigationalhyper
media. Navigational hypemedia waschosenbecausdt is the domain of the original
conceptsof hypemedia, representsthe greatestbody of work in the subjectand is
the most widely used;simply becausehe WWW is a havigationalhypemediasystem.
Throughout this thesisthe term hypemediareferssolelyto navigationalhypemedia.

This thesiscoverstwo reseach areas:systemimplementation and node-lesshyper
media. This reseach areasmay seemdistinct, when in fact they are both branches
from asingleline of reseach. In sectionx1.3 the relationship betweentheseareasis
brie y expandedupon.

1.2.1 Systemimplementation

The rst areaof reseach concems developmentof a model for the implementation
of hypemedia behavioursand systemswvhich supports them. This modelling should
emphasisdhe production of exible and expandablesystems.The exibility and ex-
tendibility has severalaspects. The primary concem is the ability for a systemto
processarangeof link speci cation languagesand the waysin which links from these
languagescanbe brought together. Thereis alsoarequirementfor the designto sup-
port the full-range of linking behaviours. Supplementalareasof reseach include the

1. INTRODUCTION 5

designbeing ableto support the processingof arbitrary mediatypes,e.g. in addition
to text, alsosupporting systemswhich processmages,video etc. Finally, the reseach
should considerhow a systeminterfaceswith the user and what role should be played
by client applicationswhich interfacewith the system. The reseach aimstowards a
designwhich allowsarangeof client applicationsto be used.

Whilst the designis the central part of this reseach area, this thesisalsocoversthe
core conceptualbuilding blocksand standadisesthem asafoundation for the design.
The reseach alsocoversan implementation of the designideaspresentedand shows
how the principlescanbe applied.

Sincethe focus of this reseach is on the implementation of hypemedia systems,
there are someareasof navigationalhypemediareseach which are beyond the scope
of this work:

The structure of agiven hypemediaitself. It doesnot matter if the hypemedia
is structured asa hierarchy, lattice, zzStructure [72] or other datastructure. the
relativemerits/disadvantagesof any of thesestructuresare not discussed.

Usability issues.Factorsregaiding what makesa hypemediamore or lessuseful
in terms of its content or form are not considered.

Linking languageevaluation. The reseach doesnot considerwhether partic-

ular link speci cation methods are sensibleor inferior/superior to any others.
For example,the reseach doesnot considerwhether XLink [31] is a sensible
link speci cation method, only how speci cationssuchasXLink canbe imple-

mented.

1.2.2 Node-leshypermedia

Navigational hypemedia consistsof a number of nodes', with eachnode holding a
sectionof content. The secondareaof reseach presentedin this thesisintroducesan
approachto navigationalhypemediawhich doesnot feature the conceptof the node.

1The terminology variesbetweendiscussionsseesectionx2.3 for more infor mation.

1. INTRODUCTION 6

There are a number of reasongo investigatesuch an approach, which are discussed
in sectionx5.1.1.

When considering a node-lessapproach a new data-stucture must be developed
to allow the storageof the content of the hypemedia. This data-stiucture must have
aclearlyde ned setof rulesand behaviourswhich presewethe intentions of the node-
lessapproach.

Having developeda core set of rulesfor such an approach there is a need for a
way of manipulating the hypemmedia structure. The reseach in this sectionconsiders
a programming languagefor manipulating node-lesshypemedia.

1.3 Structur e of the work

It isperhaps tting that athesisrelatingto hypemediareseach shoulditself be largely
non-linear in nature. A hypemediawould allow linking betweendistinct sectionsto
allow the readerto move from one part of the work to another which is connected
in some way semanticallybut not spatially adjacent. This effect is, unfortunately,
unavailablefor a printed thesis. Instead this thesisreliesheavily on section markers
to provide uni-dir ectional, un-typed links to other parts of the work. Section marks
are shown in parenthesisafter the mention of a conceptwhich is expandedupon or
discussedn another context in someother part of the document, e.g. “ An improved
modelof spangx3.6.13.2 would avoid thisissué.

Chapter 2 examinesthe core conceptsof hypemedia. In this chapterthe com-
ponent parts of hypemedia, e.g. nodes, links, anchorsetc., are discusseddiffering
viewson theseparts are intr oduced and asmuch aspossible,a common view of the
componentsis speci ed.

Chapter 3 discusseshe modelling of hypemedia from the point of view of im-
plementation. The chapter discussessome related work before introduction the
High/Low , Nottingham, SLIPA and Meles models. The description of eachmodel
includesthe aimsand shortcomings of the approach. Thesemodels were developed
at varioustimes over the lifespanof the reseach and so some of them haveobvious
shortcomings when compared againstthe standad viewspresentedin chapter 2. It

1. INTRODUCTION 7

should be remembeked that chapter 2 presentsonly the nalised modelling of hy-
permmedia conceptg and that thesestandadisationswere not availablefor the whole
period of the reseach discussedn chapter3.

Chapter 4 discussessoate, a hypemedia application which allows rapid imple-
mentation of new linking languages. The implementation of Goate has, in many
ways,beenthe driving force behind the reseach by highlighting practical issuesfor
hypemediasystemsAsthe scopeof Goateincreasedhe requirementfor astructured
solution spurred developmentof the modelsin chapter3 which in turn dependedon
the standadised modelling of 2. Whilst the work resulting from this reseach should
be considered bottom-up, the motivation hasbeentop-down. Although it wasthe
increasein the scopeof Goate which spurred the developmentof models, the im-
provementsto Goate itself could only be implemented basedon nalised modelling.
Therefore, Goate hasoften beenbehind the modelling inspired by its development.

In addition to the relationship between chapters2, 3, 4 this work contains a
branch. Section3.5.8 highlights severaissueswvith aparticular model of “spansin hy-
permedia. The remainderof chapter3 describesan improved model which, amongst
other things, avoidsthese problems. However, at this point the reseach also con-
sidered an altemative, lessconventional solution. The development of theseideas
evolvedinto Atomic Hypermedia.

Atomic Hypermedia describesan approach to hypemedia which omits one of
the commonly acceptedconcepts,that of the ‘node'. In chapter5, the motivation,
principles and operation (in an abstractedsense)of Atomic Hypermediais described
andin chapter6 a processinganguagefor Atomic Hypermediais described.

Finally, note that this thesis does not have a dedicated related work' chapter
Instead relevantreseach is intr oduced at variousstageshroughout the discussion.

2To do otherwisewould be unnecessarilyxonfusing.

CHAPTER 2

H YPERMEDIA BEHAVIOURS AND
EXPERIENCES

2.1 Overview

This chapter discussesndividual conceptsof hypemedia and provides a foundation
for the work on modelling in chapter3. However, note that this chapteronly discusses
the nal versionof conceptmodelling and so not all of the ideaspresentedhere were
availablethroughout the time the modelsin chapter3 were being developed.

2.2 Terminology

The following sectionsexamineissuesregading the modelling of behavioursacross
variousapproaches. This analysissewvesseveralpurposes. Firstly, differing and com-
mon behaviourscan be identi ed which canthen be useda basisfor the modelling
describedin chapter3. Secondly it is possibleto examineexisting terminology in or-
der to form acommon vemacular However, regaiding this secondpoint, it is useful
to de ne in advanceof other analysisomecommon termsin order to aid discussion.
To attempt to de ne evely term relating to hypemedia by examining existing work
would resultin early de nitions being unnecessarilycomplex and/or relying exces-

sivelyon forward-references.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 9

2.2.1 Pane

A “pane'is anindependentareaof the user'sdisplay The userof the application may
havemultiple panesdisplayedor only asinglepane. Panesare independentin that the
content of one panecanbe changedwithout affecting the content in other panes.

Each window in a multi-windowing environment would be consideed a pane.
Note that within eachwindow there may be further subdivisionswhich function as
independentpanes,e.g. HTML framesets.

The exampleof awindow containing multiple panesis aspeci c caseof the general
behaviourthat panesmay contain panes.Considera (window) paneA which contains
two equalsizepanesB and C. If new content! is targeted at paneB only half of the
window will show the new content, whilst if the new content is directedto paneA,
the whole window will showthe new content.

2.2.2 View

A ‘view' is the hypemedia content of a pane. A view, unlike a document (x2.8.1),

is not necessarilya presetarrangementof content and may ariseasthe result of per-

forming linking actionson a previousview For example,a userinitially requestsa
document which becomesthe content of a pane. At this point the view corresponds
to the presetdocument. If the useractivatesa link that, for example,replacesa para-
graph of text, the view may no longer correspondto a document.

2.2.3 Link

A link is an expressedconnection between areasof content in a hypemedia. The
meaning of the connection, the effect of the connection and the number and de ni-
tion of the areasof content involved varies.

1The term “content' is used here simply asa generic term representing some media with the hy-
permedia. This term is usedhere to avoid terms suchas document’, which are not accuratelyde ned
until sectionx2.8.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 10

2.2.4 End-pint

The “end-point’ of alink is a placewhich is refered to, in some manner, by a link.
For example,if alink changesthe view from content A to content B ? the end-points
of the link are A and B. A link may havemore than two end-points asdiscussedn

sectionx2.4.

2.2.5 End-pintsin context

If abinary link — one that hastwo end-points — is considered, acommon useof ter-
minology is “source' representingone end of the link, and "destination’ representing
the other. This terminology hasbeenusedin [5] and other work.

However theseterms are strongly associatedvith the ideaof one patrticular linking
action (x2.5) “traversal'where the current view is replacedwith a new view However
for someactionssuchas’include’ or ‘replace’,theseterms are lesssuitable. For this
reasonthe terms “subject' and "object' are usedrepresentingthe two end-points of a
binary link. For example,if content A is replacedby content B then A would be the
subjectand B would be the object.

Note that the both of the terms "subject’'and "object’ canbe appliedto aparticular
item accoding to context. For example, a link structure (x2.4) may de ne a bi-
directional traversallink betweenthe two points X and Y. If consideringthis action
from the point-of-view of X, X would be the subjectand Y the object, yet from the
point-of-view of Y, X would be the objectand Y the subject.

2.2.6 Data-type terminology

As part of the discussionin this chapter, and throughout the thesis,a number of data-
typesare introduced. Thesetypesrepresentthe conceptsdiscussedFor example,the
type Nodewhich modelsa singleitem of mediaasdescribedin sectionx2.3.

In this chapter the data-typesare discussedin fairly generalterms to illustrate
ownershipand hierarchy; in later section ner detailsare provided.

2The common link action (x2.5) of traversal.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 11

Throughout this thesisobject-orientated terminology is used, so the Nodeclasss
refered to when discussingthe abstracteddata-type but a Nodeobijectis referred to
when discussinganinstanceof the Nodeclass.Functions belonging to aclassare called
‘methods'.

It is entirely valid to implement a systembasedon the ideaspresentedthroughout
in a non-object-orientated language. Indeed, Goate (x4) is written in plain C asop-
posedto C++, and implementsthe classeslescribedwith vanilla structuresalongside
specialisednanipulation libraries (x4.2.5).

2.3 Nodes

In hypemediathere is the core conceptof a singleitem of media such asa piece of
text, image, structured graphicsor video clip to namejust a few possibletypes. This
section examinesthe terms usedto encapsulatehe concept of a constrained, single
item of mediaand how theseterms havebeenapplied.

Bush[17] did not referto theseitems by a singlecommon name, using the terms
‘records’ and “items' primarily, but alsorefering to particular typessuch as books'
and ‘communications'.

Nelson [75] usesa variety of terms depending on context. The hypemedia style
where readersmove from one item to another is describedas chunk style' hypeme-
dia with eachitem being a “chunk'. When considering media stored in “xanalogical
storage'the term "unit' is used. However, the primary term usedby Nelson is "docu-
ment'":

“A document consistsof anything that someonewishesto store. It is
designatedby somebodyto bea document; it may contain text, graphics,

links, or window-links — or any combination of these— that the owner
hascreated.”

This de nition will later be shownto havegreatsigni cance for the reseach.
The popular Dexter hypertext reference model® [49] representsall data stored
within the hypemediawith the term “‘components'. Components which hold items

3The nameis reducedto “Dexter” throughout this thesis.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 12

of media— asopposedto links (x2.4) — or composites(x2.8) are "atom components'.
This term hasbeenpresered by follow-on work suchas[45] and [51].

AHAM [30] is a model of adaptive hypertext basedon Dexter. In generaldis-
cussionsthe term "node' is usedhowever, for the model itself AHAM uses concept'
re ecting its adaptivefocus. This term is usedagainin paperssuchas[103].

Other termsinclude “elements'[104], “notecads' [48] and ‘documents* [68].

However the most popular term for this concept, node’, hasbeenfrequently used
in such discussionsas spatial hypertext [60], Thespis[10], HAM [18], the Fluid
Reader[105], Multicard [86], Sepia[90], Storyspace[11l]. The traditional use of
the term "node' is in graph theory when referring to alocation within a network. In
many cases hypertext is representedasa network and sothe term ts. Sincethis is
such a widely-usedterm, thesediscussiongersistwith it, evenwhen the concept of
belonging to a network is not pertinent.

KMS [2] hasthe conceptof frames'. A frameis a“ sceen-sizediwo-dimensional
spacdor a node...containing any arrangementof text, graphicsand image items?.
KMS usesthe terms ‘node' and “frame' largely interchangeablye.g. “ What is the best
sizefor a node?KMS xes thesizeof a frame to a width of 1140 pixelsand a heightof
820 pixels! However, framesin KMS are ‘richer' than in many other systemssince
they can contain multiple media types. In many waysthe KMS frame is closerto
the conceptof ‘composite’ (x2.8) and the “items'in KMS correspondto atraditional
‘node’ de nition.

2.4 Link structures

The focus of this sectionis on the representationsof linking structure.

Notecards [48] hasa simplelinking structure where eachlink hastwo end-points.
Links are uni-directional and typed. The “type' of alink is “a user-choselabel spec-
ifying the natur e of the relationshipbeingrepresented Two link types are given as
examples, suppoit’ and “source’. The subjectend-point canbe "anchored' at a par

4This de nition of documents differs from the Nelson one asit doesn't include the concept of
something being designateda document.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 13

=0

Simple

O0=0 0=0

AN

Plural

FIGURE 2.1: WHURLE link structures

ticular location but the object end-point refersto the card asawhole.

KMS [2] doesn't havethe conceptof separatdink items, rather links are consid-
ered properties of text items. The entire text item is the subject end-point and an
entire framerefered to is the object. Links are uni-dir ectional.

WHURLE [71] takesits links from a number of sources. Firstly, links can be
declaed aspart of the “skin' which stylesand framesthe hypemediacontent. These
links are speci ed asnormal HTML <a href> links. Secondly "autonavigation' links
are formed basedon the structure of the hypemedia. For examplewhen viewing a
page,the side-barwill show autonavigationlinks to the children of the page,aswell
asto the parent of the page. Lastly, links canbe speci ed in alinkbase.

WHURLE linkbasesare authored asXML documentsand support threedifferent
link structures. The “single'link type is a bi-dir ectional link betweentwo end-points.
The “plural' link type consistsof an arbitrary number of end-points where there is
a bi-directional link between every end-point combination. Lastly, the WHURLE
“hub' link type consistsof an end-point which is designatedthe "hub’, and a number
of “satellite' end-points. Betweenthe hub and eachsatellite there is a bi-dir ectional
link, although end-points are not directly connectedto eachother. Thesetypesare
shownin gure?2.1.

Dexter [49] haslink objectsthat existin the storagelayeras components'in the
sameway that nodesdo. A link component consistsof two or more “speci ers'. Each

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 14

speci er can be considered an end-point, in the generalisedsenseof the term. A
speci erisacombination of ancomponentID, anchorID, direction and presentation
speci cation. The combination of componentID andanchorID refersto a particular
location in anode and is discussedurther in sectionx2.6.

The direction attribute speci eswhether the speci er should be considered the
end-point for the start of alink, the end of alink, both the stat and end of a link,
or neither. By having multiple speci erslinks of arbitrary arity can be de ned. For
example, a link component consisting of three speci ers, two (A and B) with the
direction setto TOand one (C) setto FROM is possibleto de ne a link that has
multiple destinations. Note that this link would still behaveuni-dir ectionally; that is,
from C both A and B can be reachedbut from A or B no other end-points canbe
reached.If A had its direction attribute setto BIDIRECThen it would be possibleto
navigatefrom C to A andB andfrom A to B.

Dexter additionally speci esthe direction attribute of NONEor speci ers which
do not relateto a "source’ or “destination’ point. Hypercard buttons are given asa
possibleusefor this attribute, although the detailsare not elaboratedupon.

The presentation speci cation in eachspeci er controls the presentationof the
end-point. The detailsof this type are not elaboratedon aspart of the model.

The Dexter model of link structureisinterestingand exible. However it islimited
in the range of link structuresthat it can model. Consider an attempt to model
the “hub' link type of WHURLE. If this structure wasmodelled in Dexter it would
be necessar to make the hub and satellitesof type BIDIRECTio allow navigation
betweenthem. However doing this would alsomakeit possibleto navigatebetween
the satellitesdirectly, turning the “hub' link into a "plural’ link.

Having single link structuresrepresentingcomplex linking amrangementssuch as
in Dexter and WHURLE canbe usefulat the levelof link speci cation asthe method
of speci cation is semanticallycloseto the intent. However, if the emphasigs not on
the speci cation of links but on modelling their effect, there isno needto standadise
on afully expressivecomplexlink structure.

Instead it is possibleto decomposeany complex link structure in a number of
simplebinary links [6], eachbeing a subject/object pair. In the caseof the WHURLE

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 15

Link
[End-pint [End-point

FIGURE 2.2: High-level linking structure

hub link this meansthat for the casewhere A is the hub and B, C and D are the
satellitesthere would be the pairsfor A-to-B, B-to-A, A-to-C, C-to-A, A-to-D and
D-to-A. This structure clearlyhasagreatdeal of redundancy;A appearssixtimes, and
the author of the link hasmore work in terms of ensuring correctnesswhich would
not be necessay for a more specialisedorm. However, sincethe motivation of this
work isin modelling the effect of links, this decompositionis a usefultool.

In further sectionsthe idea of a complex link-structure is usedfor the purposes
of discussion,under the term "high levellink structure'. This structure is generalised
to simply a number of end-points. The relationship betweentheseend-points is not
elaboratedupon. Such a generalisedform containing two end-points is shown in
gure?2.2.

Although examining high-level link structuresis useful, the focus of this thesisis
on the implementation of linking, and from this perspectivethe decomposedbinary
form ismore useful. A genericbinary form isshownin gur e 2.3. Note that although
the two forms look similar in these gur es, there are already signi cant differences.
For the high-level form it is only possibleto saythat there are “a number of end-
points”; the exactnumber will depend not only the kind of link being represented,
but alsothe form the high-level structure takes. The useof two end-pointsin gur e
2.2 isonly an example.Additionally, the generichigh-level form cannot statewhether
the end-points are the subject,the object, or either dependingon context. The binary
form is more strongly de ned; there are exactlytwo end-points, and the role of each
isde ned evenin this very genericform.

Whilst the “subject’ and "object’ membersof the binary link form are link end-
points there will be differencesbetweenthis end-point data-stuucture and the struc-
ture usedaspart of the high-level structure. For example,the end-point in the high-

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 16

Link
'Subject |Object

FIGURE 2.3: Decomposedlinking structure

level form may contain extra infor mation relating to the structure of the whole link-
ing object, e.g. the “direction’ attribute in Dexter. Secondly the distinction between
subject and object end-points meansthat there may be factors which apply to one
end-point but not the other. Although this may be true in either case,the fact that
the subjectand object are clearlyde ned in the binary casemeansthat the model itself
canre ect thesedifferences.An exampleof this is discussedn sectionx2.7.6.
Decomposed,binary, effect-drivenlink modelling formsthe core of the modelling

discussedhroughout chapter3.

2.4.1 Danglinglinks

It is possiblefor alink to haveasingleend-point. At rst this maynot seemto make
sensebut there are occasionswhen it canoccur. Firstly, alink may become "broken’
with one end-point no longer being valid due to the referencedposition being moved
or deleted. In this casewhilst the link may havetwo declaed end-points, only one
actually exists. Secondly a link may havea single end-point becausethe secondend-
point isyetto be created[44]. Generally links with a single end-point are known as
“dangling links' [44] or "broken links' [27].

There are in fact two casesof dangling links; either the systemis aware of the
presenceof only asingleend-point or it isnot. An exampleof the rst casdsdescribed
in [44], which discussesiow dangling links canbe usefulfrom a systempoint of view:

“First, they allow lazy updating and garbagecollection following node and
anchor deletion. This is usefulwhen the link to be deleted (or modi ed)

liveson another machineor is currently locked by another use. A second,
relatedsituation involvesdata objectsoutside the control of the hypeme-
dia, for example, les with component [(node)] needingto be moved or
deleted. Third, the dangling endpoint canbe “re-linked' or re-connected

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 17

to anothernode or anchorwithout havingto rebuild the entire link (espe-
cially usefulfor multi-headed links). Finally, dangling links canbe created
intentionally asplaceholderswhen the desired endpoint node or anchor
doesnot yet exist.”

The WWW provides an example of the seconddangling link case,that where the
systemis unawate of a dangling link. The systemwill allow the userto click on alink
marker, or “trigger' (x2.7), and attempt to follow alink which hasno valid end-point.
Typically this resultsin an error pageif the referenceddocument doesn't existat all,
or the top of the pageis shown if a speci ed in-page marker doesn't exist. There are
afew solutionsto this problem. [28] discusseseverabhpproachesunder the headings
of “Detection & correction” and “Prevention”. One method discussedemploys a
“spider'to checkdocument correctionsand removelinks from documentswhere the
destination is invalid. It would also be possibleto do this at a client level, with the
browsercheckingthe destination existsbefore un-presentingthe current pageor only
making the link markersavailableoncethey havebeencon r med asbeing valid. There
are still problemswith this approach. In many casesa Web sewer doesnot return an
error code for invalid destinationsbut displaysa prede ned pageand a spider/client
would not be ableto tell this from the intended content [6]. If this problem could be
solvedit would reducethe problemsof the WWW to that of the rst classof dangling
link previouslymentioned.

Whilst a hypemmedia systemmay be ableto dealwith a dangling link, to a greater
or lesserextent, it is almost alwayspossibleto create dangling links. Simply, if a
document can be modi ed or deleted, it is possiblethat a link refering to it is no
longer valid[27]. One casewherethisisn't trueisasystemsuchasXanadu[75] where
contentisneverdeletedor modi ed, but only supplementedwith anewversion.Once
published, that versionof document will not change,although there may be a newer

versionavailable.

2.4.2 Embeddedand externallinking

Link speci cations may be embeddedin one of the documents being referenced —
usuallythe start end-point — or stored separatelyfrom the document in somearbi-

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 18

trary format. Additionally, there may be a hybrid approach [25] where the spanis
embeddedin the document and labelled. Externally stored links can then refer to
theselabelledspans.

There are advantagesind disadvantageso eachapproach. From [27]:

“The advantage®f [the embedded]approachare:

Simplicity. The links are encapsulatedvith the data, sowe may move
the data around and edit it freely and, so long aswe do not break
the binding of the link to its associatedobject, all links from the
document will continue to function.

Scalability All the information about the link is right there with the
content; thereis no needto referto someextemal sewviceto discover
the destination anchor(s).

However, there are disadvantagego this approach. Only the node that
contains the link knows about the link. This meansthat such links can
only be uni-directional, and it meansthat it is not easyto designtools,
such ashypertext browsersthat analysethe link network. The only way
that we candiscoverthe link structureisto implement someprogram such
asaWeb crawlerwhich, givenastarting point, traversesll links that it can
nd building the structure.”

In [42] Grgnbaeketal. comparesthe embeddedlinks of the WWW links againstthe
Dexter model and make the argument that extemal, Dexter-style links are superior.
Whilst this work doesnot seekto argue the superiority of either approach, [42] mis-
characteriseshe differences.In particular, the papersetsup a ‘strawman' by treating
all embeddedlinks asbeing like those of the WWW, when although all WWW links
are embedded, not all embeddedlinks are like the WWW (x4.7.3).

2.5 Link actions

This section examinesthe effect of activating a link, or what happensto the view
presentedto the userwhen a link is active. The behavioursidenti ed here form a
basisfor the modelling presentedin sectionx3.6.1.

SIgnoring futur e widespreadadoption of client-side XLink.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 19

The term “traversal'is usedin [48], [92] and [69] and othersasageneralterm for
the act of following alink. For the purposesof this work it is necessar to be more
speci c regading the preciseeffect of activatingalink.

The term traversalimplies a movement from one position — in the hypemedia
— to another, i.e. the existing view is completelyleft behind and a new view replaces
it. In the discussionshere, the term “traversal'is resewed for this particular action,
involving the replacementof the entire existing view.

In [48] the linking action of Notecardsis de ned as:

“Clicking in the link icon with the left mouse button traverseshe link,
i.e. retrievesthe destination cad of the link and displaysit on the screen
readyto bereador edited.”

Notecards supports multiple cards being visible on the screen at the sametime, and
the linking structuresand screenshotsgiven asexamplesin [48] show that activating
eachlink hasbrought the object card onto the screenwithout replacingthe existing
view This linking action is not ‘traversal'asde ned above but "appear’,the act of
bringing new content into the existing view, using a new pane.

KMS [2] usesthe term “navigating':

“Users navigate from frame to frame by pointing the mouse cursor at
an item linked to another frame [(node)] and clicking one of the mouse
buttons KMS accessethe designatedframe and displaysit in the
samewindow Thus, KMS is replacingthe currently displayedframe
asthrough the userhad physicallytravelledto a new location in the real
universe.” .

SinceKMS usesa single whole-screen pane,and this is entirely changedby activating
alink, KMS “navigating' matchesthe de nition of “traversal'above.

The WWW providesarangeof linking actions. The default action for alink speci-
ed with <a href> isto changethe current view to a pagespeci ed. This behaviour
canbe modi ed by useof the target attribute. For example,with atarget to setto
a particular label, the referred to content will appearin a new window if the window
doesnot alreadyexist, or replacethe content in that window if it does. If the label

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 20

is setto the speciallabel of "_new, the content will alwaysappearin a new window.
WWW linking therefore exhibits the behavioursof “traverse',”appear'and ‘replace'.
However, the use of client-side technologies alongside traditional HTML, e.g.
JavaScripbr Flash,allow a WWW browserto modify the view in arbitrary ways. For
this reason,a WWW browsermay be capableof any linking action.
The Amsterdam model [51] considersthe caseof “pattial replacement'in a multi-
mediasystem;that is, a systembasedaround video and audio streams:

“Most [hypertext] systemgpresenta single hypertext node which is either
replacedby the destinationinformation, or is left on the screenwhile an-
other window is createdfor the destination information. ...Having an
either-or model is usefulfor text (where most readerscanonly focustheir
attention on one block of text at a time), but it is lessuseful for mul-
timedia presentations,where a user can follow a line from one block to
another while continuing to listen to a spoken commentary or watch a
video presentation.”

The concept of partial replacementis useful generallyand not just for multi-media
centred presentations. For example, a section of text may include a de nition of a
technicalterm. This de nition may be, by default, fairly limited and lacking in detail.
A link could be de ned so that the limited de nition is replacedby a full de nition,
still within the context of the restof the document. This is just one casewhere “pattial
replacement’is usefulin a non-multi-media context.

The Amsterdam model speci esthe conceptof ‘link context' [52] which de nes
which parts of the current presentationare affected by the link. The term “source
context' refersto the subjectpart of the link and "destinationcontext' the object part.
A further quote from [51]:

“A bene t of specifyingcontextisthat only part of the document structure
needsbe affected on following alink. Components [(Nodes)] higher in

the composition hierarchy remainactiveand only those at the lower levels
are affected.”

This bene t of partial replacementtiesin with the behaviourof replacementusedasa
core linking behaviourdiscussedn sectionx3.6.1. Note that in this work thereis no

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 21

distinction made betweenfull and partial replacement;the fundamentalaction is the
samefor both, with only the scopeof the subjectvarying.

In WHURLE there are a number of waysfor links to be de ned (x2.4). The
systemidinks are typically usedfor moving to areasoutside of the educationalcontent
of the hypemedia. This action would normally be “traversal’,although it is possible
for the skin designerto setthe links to usea new window, making the action “appear'.

The two remaininglink classeare "autonavigation'and ‘linkbase'. Autonavigation
links allow navigation around the structure of the lesson,i.e. up and down page
the hierarchy. Linkbase links allow navigation around the lessonor to an extemal
resource. Navigating around the lessonhighlights an interesting case.Although the
mechanismis "traversal',sincethe whole view in the single paneis replacedwith new
content, in principle the action is replacementsince some of the view, the skin, is
common to eachpage.

In [75] Nelson discussedhe linking action of “inclusion' asa core part of creating
documents. In this model a document can freely include parts of other documents
(which themselveanay contain parts of other documents). Nelson alsodiscusseshe
legal and commercial impact of this approach, although theseconsiderationsare out
of the scopeof this work.

2.5.1 Commonview

Having examinedsometypical linking actionsand assignedabelsto them, it is useful
to summariseexactlyhow theselabelsdiffer in relation to the actionsthey describe.

Consider the subjectaffectedin eachcase.For “traversal'the subjectis the entire
view In the caseof ‘replacement'the subjectcanbe anything from the smallestatomic
unit of content up to the entire view minus the smallestatomic unit of content. In
other words, the only differencebetween traversal'and ‘replacement'from the point
of view of the subjectis whether the entire view is selectedor not.

For the action of "appear'the subjectis the entirety of a new pane, whilst with
‘inclusion’, the subjectis a zero-sized point in the document.

All of theseactions have presumedsome "object’ content. If there is no object

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 22

content but there is content captured by the subjectof the link, the actionis ‘removal'.
Although this action is relativelyuncommon in hypemediadiscussionsit is a natural
complementto “inclusion'. As for the opposite of "appear’,the obvious label would
be “disappear'the removalnot only of content but the paneitself.

In the generalsense the effectsof link activation can be describedas eventto-
action' where “event' is the eventwhich causeghe link to be activatedand “action' is
the experienceof the user, due to link activation (x2.7.4.2).

2.6 Anchors & Spans

The term “anchor' is usedin relation to the position of an end-point of alink. The
end-point of alink is “anchored' to anode or part of anode.

2.6.1 Dexter

Dexter [49] considersthe value of anchoring asthe ability to specifynot only links
between whole components (nodes) but also span-to-spanlinks, asin Intermedia.
Dexter seeksto maintain an independencebetweenits layers,and so the end-point
speci cation cannot rely on any knowledge about the structure of the nodes. The
structure of the anchoris describedas:

“An anchor hastwo parts: an "anchorid' and an "anchorvalue'. The an-
chor valueisinterpretableonly by the applicationsresponsiblefor handling
the content/str ucture of the component. It is primitive and unrestricted
from the viewpoint of the storagelayer The anchor id is an identi er
which uniquely identi es its anchor within the scopeof its component.
Anchors cantherefore be uniquely identi ed acrossthe whole universeby
acomponent UID, anchorid pair.”

In summairy, under Dexter the anchoris de ned aspart of the node, andlink structure
refersto the anchor. The valuepart of the anchor can be updated asthe content or
structure of the node is updated, but by keepingthe "anchorid' constantalink which
refersto asectionof anode cancontinue to referto the samesectiondespiteupdates.

60r “bound' [14].

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 23

The aim of keeping node structure proprietary is admirable since when this is
achieveda systemhasthe ability to add support of arbitrary media types by only
updating the relevantpart of the system,in this casethe "within-component layer'.
However, examining how link structuresthemselvesare generatedhighlights some
additional issues.

If the link structure is generatedin an interactiveway, e.g. the userselects create
link', then chooseghe end-points by clicking on aninstantiatedcomponent, then this
approach canwork. The run-time layer can signal the areasselectedto the within-
component layer, which will then generatethe relevantanchorvalue.

However, considera structure formed from the interpretation of some variety of
a ‘written down' form, e.g. link-basedin an arbitrary format. If this link speci cation
format hasthe ability to specifyareaswithin a node then there is an issueregaiding
how the proprietary anchorvaluecanbe generated.This value,accoding to the Dex-
ter model, can only be generatedby the within-component layer for that particular
type of node. This implies that either the interpretation of the link speci cation is
performed by the within-component layer, or the parser whereverit islocated,is able
to passa messageo the within-component layerwhich describethe areawithin the
node, and the within-component layergenerateghe anchorvaluefrom this message.

The rst of thesetwo approacheswould meanthat eachnode type handler would
alsoneedto be ableto parseanylink speci cationsin use. This would leadto massive
code replication and redundancyin a systemwhich supported multiple linking lan-
guages,andwould not be conduciveto modular programming. The secondapproach
would involve de ning a standadised messagedormat which can capture any node
areaand this is implicitly de ning a single spanformat. A more pragmatic approach
that avoidstheseproblemsis to require the applicationto de ne a common in-node
referencing format, and this is discussedn sectionx2.6.6.

Under Dexter, when a node is instantiated the anchorspresentin the node are
alsoinstantiated. Instantiated anchorsbecome 'link markers'. For markerswhich are
referencedaspart of a speci cation with the direction setto FROMhe markercanbe
activated— for example,by clicking on the areade ned by the marker — to follow
the link. There are casesvhere the anchor for alink should not be closelytied with

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 24

the method of activating the link (x2.7.3). For this reasonthe standadised form
discussechere separateshe conceptof a position within a node from the method of
activating alink, the “trigger' (x2.7).

2.6.2 DHM

DHM [44] altersthe Dexter view of anchoringin severalways.

DHM replacesthe anchor id lookup addressingwith a “pointer' type which can
referencean anchor directly. This changedoesnot directly affect the considerations
of this work sincethe modelling in this thesisdoesnot feature anchorsaspart of the
node structure. However, one of the issuesaddressedby this changeis of interest.
From [44]:

“The biggestproblem with Dexter's model of anchorsis that they are not
properly relatedto composites[x2.8]. That is, although the contents of
a composite (a list of baseComponents)is “visible' (i.e. explicitly repre-

sented) in Dexter, no mention is made of how anchorsshould refer to
baseComponentswithin a parent composite.”

By usingdirect pointersto anchors,DHM sidestepshis problem. Again, this solution
doesnot directly applyto this thesis. However, a similar issuedoesexistwith the use
of node typeswhich allow included nodes (x2.8.4), and the ability of a spantype
(x2.6.6) to reference included nodes within a node. The solution to this issueis
discussedurther in sectionx3.6.13.4.

DHM alsodiscussesmarked’ and ‘unmarked' anchors. Marked anchors,or “link
markers'in Dexter terminology, existat a particular placewithin the node. If acer
tain areaof a node is clicked upon the editor/viewer canexaminethe list of marked
anchorsand seewhich, if any, apply Conversely 'unmarked' anchorsdo not exist at
ade ned location, to seeif an unmarked anchor appliesat a position the anchor it-
selfmust be queried. For example,the text presentat the point of selectionmay be
checkedto seeif it matchesallist of keywords, and if it does,the link is followed.

Unmarked anchorsare similarto Microcosm's genericlink’, and presentan inter-
esting case. The modelling solution adopted for this work doesnot directly support
this behaviour, sinceall links haveto be declared at time of view generation (x3.6.12)

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 25

although it is possibleto declare the trigger (x2.7) for links. This is what would be
selectedfor agenericlink, without calculatingthe subjectand object parts by the use
of locators(x2.6.6 & x3.5.5.1).

2.6.3 Intermedia

In [68] Meyrowitz describesabroadly similar view of anchorsto Dexter, which is not
surprising sincelnter mediawasone of the systemsn which Dexter wasbased.

The term “block' is usedto referto a selectedareaalthough there is sometermi-
nology coincidencewith the statement,” blocksare anchorgo the part of a document
modelthat is representedbya selectioh Unlike the Dexter papers,[68] makessome
effort to describehow the block could referencedifferent kinds of media:

“For example,in text it would be an insertion point, character or range
of characters;in structured graphics,it would be a primitive or group of
primitives; in musicit would be anote, group of notes, measue, or group
of measues.”

2.6.4 Tumblerarithmetic

Tumblers[76][75], describedby Nelson asa part of Xanadu[85] describesa method
of referring to alarge document space.A tumbler consistsof a seriesof "digits’, each
digit being anunbounded positive number, surrounded before and after by afull-stop.
Exampledigits could include: .6., .12., .293. .

Tumblerscanbranch by the addition of more digits. Starting with .6. astructure
may branchinto severamoreitems:.6.1. ,.6.2. ,.6.3. ,.6.4. . Theseitemscanbe
branchedagain,e.g..6.4.6. isthe sixth item under .6.4.

Addressesn Xanadu are refered to by a tumbler in a specic form. That is,
.a.0.b.0.c.0.d. . a is a seriesof digits, a " eld’, describingthe sewer refered to,
b refersto the user, ¢ refersto the document and d the contents (node). This scheme
is designedto allow globally, in the literal senseof the word, unique addressesThe
total length of the tumbler will alter accoding to the complexity of the docuverse.

Nelson states:

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 26

“In [Xanadu] we often needto designatea range of bytes, documents,
sewersor the like. We maywant to makealink to this range,or seach for
all the documents[nodes] in this range, or seach for all the links that lie
within this range (or overlapit). Sucharangewe call aspan.”

Spanscanbe de ned in two ways.Firstly two tumblers referencing absolutelocations
in the docuversé can denote the extremesof the range. Secondly a place tumbler
can be used with a “difference’ tumbler which describesthe offset areato capture.
Sincetumbler-basedstorageformsatreestructure it is alwayspossibleto selectavalid
amount of spacethis way

This approachto spansgsinterestingin severalvays.In somerespectghe approach
isthe opposite of the Dexter-basedmethods, asit emphasisethe structure of the span
rather than abstractingit. Xanaduspansdo not existasindependentobjectsassuch,
being purely de ned by the spacethey capture. The Xanadumethod side-stepsssues
such asupdating of end-points to re ect changing documents; sincein Xanadu all
versionsof documentsare stored, so a referencedversionremainsunchanged.

However there are someissueswith this approach. The main one is that although
quite good for plain text, the byte-centred view of content is not natural for all media
types, e.g. images.Also, many would argue that the persistentstorageof all versions
of dataproducedis not suitablein many situationsand if this clauseis removedthen
other issuesare intr oduced suchasdealing with changingdata.

Additionally, although the spanapproach doesallow multiple documents(nodes)
sincethe digit valuesdo not haveanysemanticmeaningin themselve8, the bene ts of
selectingby digits are limited exceptin the caseof large spanssuchas“everything on
this sewver” or “everything by this user”. Groups of spans, span-sets'are discussed,
thesehavelittle structural valuesimply being unordered groups of spans.

There are also practical issuessuch asthe unique allocation of digits in such a
de-centralisedsystem.But theseare out of the scopeof this thesis.

Placetumblers', the type previouslydescribed.
8That is, the fact a document existsat .1. is no more signi cant than if it existedat .1024. .

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 27

2.6.5 XPath/XPointer

XML is a markup languagebasedon SGML [95] and, nominally, consistsof ele-
mentsandtext. Elementshaveaname,and optionally attributes with values.Elements
can contain text and other elements.A XML segmentmay look like this: <element
attribute="value">some text</element> .

XPath [96] is a meansof identifying parts of an XML document and is used by
XSLT [21], atransformation languagefor XML documents,and XPointer. XML doc-
umentsare atreestructure and a XPath expressioncanreferto parts of the tree.

XPathexpressionganeither be a “location path' or ageneralexpression A location
path is the most useful XPath expression[54] and consistsof zero or more “location
steps'to identify a setof nodesin a document. Each stepis a “node'® whosetypes
include'® element, attribute and text.

The form a location path takesis similar to a UNIX le path with the nodes
separatedyy slashesFor example/doc/chapter/sentence would locate a sentence
elementwithin achapter elementwithin adoc element.

Attribute nodes are identied with a leading @ for example
/doc/chapter/sentence/@added would reference the added attribute of the
element sentence. text() selectsthe text presentat the position in the path, for
example/doc/chapter/sentence/text()

As an altemative to location paths,a XPath expressioncanbe a generalexpression
which includesnumeric expressionsand string operations. The full setof possibilities
from theseexpressionds beyond the scopeof this discussion.

XPointer [97] allows XPath expressionsto be used as addressesfor URIs.
The XPath expressionis placed within xpointer() after a hash on the URI. e.g.
http://server.com/page.html#xpointer(/name/bob)

XPointersalsoallow ‘ranges',where the resultof the rangeis asetof nodes.Ranges
can either capture by elements(e.g. selectthe contents of all sentence elements)or
by text.

9This bearsno relation to the useof the term “node' representinga constrainedsection of media.
10 An exhaustiveexaminationof the typesis not required for this discussion.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 28

Text rangeslook for the occurrence of a string regadliessof which elementthe
text appearsin. After nding the text, the result can either be the text, or a section
offsetfrom the found text.

XPath/XPointer are similarto tumblersin that theyfocuson the addressingscheme
rather than the independenceof an encapsulatingobject. Like tumblers they are spe-
cialisedtowards referencing a particular medium; XML documentsin this case,text
documentsfor tumblers!?.

XPath & XPointer form a powerful way of addressingdatawithin XML formatted
documents, although the complexity of the language$? is more than is neededfor
purely addressingpurposes.So it is possibleto referenceparts of a XML document
more simply (x4.3.4.3) although the abilities of XPath & XPointer give a powerful
userlevel tool and help to guard againstdocument changesmore effectively than a
more simplistic approach might.

It canbe suggestedthat there are two parts to XPath & XPointer. Firstly, there is
the ability to accuratelyreferencepoints within XML documentsand secondlythere
are the userleveltools.

2.6.6 Commonview

The work in this thesisis largely concemed with implementation issueswith a view
towards formulating a practicalmodel for linking actions,including document forma-
tion, in hypemediasystemsLeavingthis dataproprietary and unde ned, asin Dexter,
leadsto the problems previous discussedlnstead, in this work a classis considered
that is availablethroughout the hypemediasystem.Regading the namefor this con-
cept, the term “anchor' is avoidedto preventany connotations with the activator for
alink (x2.7) and the term “span'is usedinstead.

The Spanclassmust be ableto referencecontent in any mediatype processedy
the application. For exampleif the systemprocessesext and images,the Spanclass
should be able to referencebyte offsetswithin text and regionswithin the image. If

11 Although Nelson would almost certainly argue that tumblers are suitablefor all mediatypes, this
is not aview supported by this thesis.
12\Which this discussionhasonly scratchedthe surfaceof.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 29

the systemalsohandlesvideo, the Spanclassshould include awayto referenceregions
of the frame, and a period of time within the video.

The complexity of the Spanclasscan vary accoding to the exibility desired by
the systemdesigner For example, it is simple to implement the speci cation of an
image region by specifyingthe cornersof arectangle.A more exible, but alsomore
complicatedapproachis to allow anumber of points to be de ned andto capture the
areawithin them. Similarly, it is simpleto describea region of avideo by arectangle
intra-frame region and a time-span. A more complicated approach would not only
allow amore exible intra-frame region but alsoallow that region to vary acrossthe
time-span.

The ideaof a Spanclasss, at this stageof the work, ageneralconceptandthe ne
detailsof the 'mechanics'of the classare not important. Mor e explicit discussionon
the implementation of spanscanbe found in sectionsx3.6.13.2 and x4.3.4.3.

However, without detailed implementation discussionsa few considerationscan
still be discussedt this point. Firstly, asensibledesignof Spanclasswould be extend-
able to include new mediatypesasthe scopeof the systemincreasesFurthermore,
addedsupport for new mediatypesshould not affect parts of the systemalreadyusing
the class.

Secondly a Spanclassshould feature, asa member, a Locator object. A locator
allowsthe rangerepresentedoy the span,the “spanvalue?, to be updatedin asimilar
wayto the useof the “anchorvalue'in Dexter. Locators, like spans.are ageneralcon-
ceptand the wayin which locatorswork may vary from designto design.A particular
approachto locatorsis discussedn sectionx3.5.5.1.

Lastly, the classmay include a member of classPresentation which describes
how the spanshould be styled. For example,the object may specifycolour shadings
to applyto the span.

An genericoutline of the Spanclasss shownin gur e 2.4.

Basedon this de nition of a spanit is possibleto update the previousde nitions
of ahigh-level and decomposedinking structure to thoseshownin 2.5 and 2.6.

13Note that the spanvaluedescribesnot only the location within the node but the address/ID/etc.
of the node itself.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES

Span

FIGURE 2.4: Spanclass

Link

End-point

End-point

FIGURE 2.5: High-level linking structure

[Link |
Subject Objec
Spa

FIGURE 2.6: Decomposedlinking structure

30

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 31

2.7 Triggers

2.7.1 Overview

In section x2.4 link structures were discussedand two views were introduced, the
high-level structure (Figure 2.2) and the binary, decomposediow-level form (Figure
2.3). In sectionx2.6 amore preciseview of link end-points wasintr oduced, resulting
in revisedforms of the two structures(Figures2.5 and 2.6). The actionscarried out
by alink were discussedn sectionx2.5.

In this sectionthe conceptsof link structure and link action are tied together, as
the processof link activation is examined. A shorter version of this discussionwas
published as[65].

2.7.2 Link activation

The WWW haspopularisedthe ideaof “clicking on alink”, an expressionwhich also
featuresin hypemediareseach [42]. However, aspreviously described,a link is in
concepta semanticconnection and in practicea data-stuucture capturing end-points.
An altemative description has been that the link anchor is clicked upon to activate
a link [103]. This description is slightly better asthe idea of an anchor is closely
associatedvith the ideaof alink end-point. However, an anchor may not alwaysbe
associatedwvith alink, e.g. the anchor structure is persistentregaidlessof whether a
link structure refersto it or not [25].

A better description of link activation is to saythat a symbolic representationof
the end-point may be clicked upon. In Dexter [49] describedthis symbol asa "link
marker":

“Instantiation of a component also resultsin the instantiation if its an-
chors. An instantiatedanchoris known asalink marker. This terminology
is congruent with that usedin Inter media, where the term “anchor’ refers
to an attachmentpoint or region and the term “link marker' refersto the
visible manifestationof that anchorin a displayeddocument. In order to
accommodatethe link marker notion within the model, an instantiation
is actually a complex entity containing a baseinstantiationtogether with

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 32

a sequenceof link markersand a function mapping link markersto the
anchorsthey instantiate.”

In other words, link markersare separatedataobjectswithin the instantiation although
they map onto existing anchors.Theseanchorsare in turn associatedvith particular
link structures.If alink markeris selectedthe systemdetermineswhich link structures
the associatedinchoris amemberof, and from there candetemine the availableend-
points.

Link markerissuesare alsoconsideredin [81] which addsseverakonsiderationsto
the original Dexter model. Firstly, the paperconsidershow link markersare associated
to anchors,i.e. is there a static or a dynamic mapping?Secondly the paperdiscusses
that not all anchorswill have associatedink markers. This underlines the previous
issuewith “clicking on anchors”.

OHP [26] following [58] useghe term “persistentselection'for “ that objectwithin
the nodedata whichis the physicalmanifestation of the link anchor suchasa coloued
text string”.

Rizk and Sauter[86] describelink activation where a user can activate, e.g. by
clicking, a ‘sensitivearea' which is associatedvith ananchor. Interestingly, [86] states
that “the propetiesof sensitiveareas(geomety, kind of eventapturedetc...) arethe
soleresponsibilityf the contenteditor”. This implies that the location of sensitivearea
may be distinct from the location of the anchor. However, sincethe term anchor is
de ned as“a hypemedia objectassociatetb a sensitiveared’ rather than asa part of
an end-point type, the de nition is lessclear However, the suggestionof a range of
possibleeventsand a dissociatedsensitiveareais interesting, and is expandedfurther
in this work.

Any de nition of link activation basedaround “clicking' is fundamentally limited,
asa number of “events'may causethe link to be activated. For example,document
formation (x2.8) basedaround linking is lessusefulif eachpart of the document must
be brought into view by a manual click. Link activation eventsare discussedurther

in sectionx2.7.4.2.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 33

2.7.3 The needfor a sepaate structure

The “instantiated end-point aslink activator' model is not suitable for generallink
modelling due to the implication that the activator existsat one end of alink. This as-
sumption works when the linking action is limited to "traverse'— within the pane—
or "appear',sincetheseactionshavean “all or nothing' approachto the affected con-
tent. The view containing the activator is either completely replacedor not affected
at all. Caseswhere part of what the userseeds affected by the link action, highlights
the limitations of this model.

ConsideraHTML framesetdividing a window vertically into two panes.The left
paneis usedfor a menu and featuresa number of clickable sections.The right pane
showscontent which changesasoptions in the left paneare clickedon. This behaviour
isimplemented by using <a href> links with the target attribute setto point to the
content pane.If the <a href> sectionwasone end-point of the link then it should be
affected by the link action, but insteadthe subjectof the link is the content paneand
the object of the link is the new content. In other words, the activator for the link is
distinct from either of the end-points of the link.

A more complex example can be constructed using Hytime [78] to describea
“time-based'document. A video clip might be displayedin one sectionof the viewable
screen, whilst annotations or elaborationsupon that clip appearin another. The text
of the annotations could be scheduledto changeat particular timing valuesof the
video'*. The end-points of the link in terms of effect are the annotation pane and
the new annotation. The activator itself is not affected, i.e. it is still in view after link
activation.

The useof link contextsin the Amsterdam model [52] are an improvementover
the traditional view of link markerssincethey allow replacementof sectionsof the
view However the marker must still be presentwithin the subject®, soit is not pos-
sibleto de ne the effect of the rst examplein this section.

In addition to distinct affected areas,the presentationof the marker should be

14pageetal. describea similar situation with the annotationstaking the form of setsof availablelinks
in [82].
15°*Source context' in AHM terminology.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 34

separatefrom the presentationof the end-points. In a particular systemmarkersmay
be back-shadedn blue, but the regions of a view that would be replacedwith new
content are back-shadedyellow. There would needto be a distinct presentationde-
scription for the marker and the end-points.

For thesereasonst is usefulto introduce aseparateconceptnamed trigger' which
describesthe activator of a link and is distinct from the idea of a link end-point.
Alongside the general concept, a classdescribing a trigger, named Trigger, can be
introduced.

2.7.4 Triggerstructure
2.7.4.1 Span

The conceptof aspandescribingaregion of hypemediahasbeenintr oduced (x2.6.6)
and the Spanclassmust be capableof referencing within anytype of mediaprocessed
by the system.

This sametype is usedwithin the Trigger classto de ne where the trigger exists.
Soit is possible,for example,to de ne atrigger which is availablebetweentwo points
of text or within acertain region of avideo clip.

2.7.4.2 Event

The event member of trigger describeswhat causeghe link to be activated. Event
types could include clicking on the trigger's span, hovering over the spanwithout
clicking the mouse or a trigger which is activatedassoon asit is presented.In this
thesisa number of symbolsare assumedvhich representthesebehaviours,e.g. click
hover, timeout andinstant .

The instant type would be usedin a number of situations. Firstly instant trig-
gersare usedaspart of document formation. As soon asthe "basenode' is displayed
the links appliedto that node which include extra content should be activatedwith-
out userintervention. The examplegiven in the previoussectionregading a display
updatedthrough the playbackof avideo clip would alsousethe instant trigger. This
approachallows synchionisation asdiscussedn [53].

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 35

As well asa simple type, the event description should include relevantquali ca-
tions. For example,for hover the number of secondsof hovering before the link is
activated.A similar quali cation would be usedfor the timeout eventwhich activates
the link after the trigger hasbeenpresentedfor a setamount of time.

In generalthe behaviourof alink canbe describedby the eventand the action in
the form of “x-to-y', e.g. ‘click-to-traverse', "hoverto-r eplace'etc.®

2.7.4.3 Presentation
2.7.5 Generabppeaance

The presentationattribute determineshow the trigger appearsn screen.Hypermedia
systemshaveuseda variety of stylesto show the presenceof triggers within adisplay
Thesestyleswere summarisedby Weinreich etal. in [99]. For exampleHyperTIES
highlights triggers by using cyantext [88], Intermedia placesan arrow icon next to
the trigger, Harmony shadeghe background of the trigger area[66]. The default use
of blue underlined text on the WWW is well known.

The presentationstyle of the trigger may affect the interpretation of the span.For
example,alink may be de ned sothat the word "badger'is a trigger to displaysome
information about badgers.In some stylesthe trigger would exist over the entire
word, and clicking anywheee on that word would causethe link to activate.In other
cases marker may be placedafter eachinstanceof the word and clicking the marker
activatesthe link.

Weinreich et al. also considerspresentationstyleswhere a link hasmultiple end-

points:

“Links with multiple endpoints do not connectonly two, but a setof re-
lated nodes.Thus different altemative destinationscanbe provided. When
a userinitiates the traversalof a link with multiple endpoints, he can be
requestedto choosebetweenthe availableoptions. This solution waspre-
ferred by most former hypertext systemsMicrocosmand DLS presented
a list of generatedlink targetson an intermediary pageasthe result of a
userquery. Inter media displayeda box with alist of link titles. Likewise,
the prefered ideafor XLink seemdo be apop-up menu.”

16 Although ‘instant-to-y' doesnot ow so nicely.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 36

As well astheseoptions it is also possibleto show multiple options in-line with the
position of the trigger. For example, GHURLE (x4.7.4) presentspossibleend-points
in ablock (gur e4.8).

The rendering of multiple end-point links provides an exampleof how the pre-
sentationspeci cation may alter the effectivetrigger span.In Goate (x4) trigger spans
are de ned by Languagemodules (x4.7) which haveno knowledge of the details of
the hypemediaclient in use.Whilst the modules can declae a generalpreferencein
trigger presentationstyle, such as pop-up' or “block’, this may not be availablefor
a particular client. For example,the Defren renderer (x4.8.1) presentsmultiple end-
points by placinga<a href> link around the "top' option and listing other options as
sufxes (gur €4.9).

2.7.5.1 Title

In somecasessuchaswith a pop-up or block styletrigger block, there is a require-
ment for some title text' to be de ned!’. For sometrigger presentationstylesthe title
text will not be needed,such asfor single end-point links where the trigger spanis
simply clicked on to activatethe link. Additionally, evenif a pop-up presentationstyle
is chosenthe pop-up may not be activatedwhere there is only possibleend-point for
the link.

However, it may be sensibleto require title text to be presentin all casessince
although alink author may not anticipateit being useddue to the expectedpresen-
tation style,the presentationstyle may change.For example,a patrticular client in the
hypemediacannot handlethe speci ed styleand so an altemative is used,one which
doesrequire atitle. Alternatively, whilst the author anticipateda singleend-point link,
links from other sourceswith triggers declared over the samespanwould resultin a
multiple end-point link which requiresa style featuring the title text.

The complete Trigger typeisshownin gur e 2.7.

The title text de ned aspart of the presentationspeci cation may or may not be the sameasthe
link title asde ned aspart of the link speci cation, e.g.in [31].

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 37

Trigger
Spa
ven

i!

FIGURE 2.7: Trigger type

End-point
Span Trigger
Locatar
Presentatiofy Presentatiof

FIGURE 2.8: Endpoint classincluding trigger support

2.7.5.2 Reconciliation

Note that a trigger is affected by two presentation speci cations; the member de-
scribedin this section and the presentationspeci cation in the Spanmember. The
detailsof thesetwo speci cationsmust be reconciledby the hypemediasystem.

2.7.6 Integration

The modi cations to an existing hypemediamodel to accommodatetriggers depend
on the current modelling of links. For the high-level structure discussedhroughout
this chapteratrigger should be attachedto eachend-point!8. The hypemediasystem
will needto presentthe trigger when both the trigger location and end-point location
arein view A modi ed end-point classs shownin gur e 2.8.

Triggersin high-levektructuresneedto be attachedto end-points and cannot exist
directly under the link datastructure, sincein the casewhere multiple end-points are
in-view simultaneouslyit would not be possibleto know which end-point should be

B A particular designermay wish to havemultiple triggers per end-point, this possibility is not dis-
cussedhere.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 38

Link
'Subject |Object [Trigget

FIGURE 2.9: Decomposedlinking structure supporting triggers

affectedby which trigger [6]. Note that in casesvhere anend-point cannotbe usedas
the subjectfor alink, e.g. with a uni-dir ectional link, the trigger part canbe omitted
or left unde ned.

With the decomposedmodel there is no ambiguity regaiding which end-point is
affected by the trigger. Therefore, whilst it is valid to havea Trigger member of the
Subject part it is equally correct to havethe Trigger asa direct member of link

data-stucture asshownin gur e 2.9.

2.7.7 Indepgendenttriggers

Although it is not centralto the principle of triggers, a system/model designermay
decideto promote triggers to be independent of the link object. In this casea link
object would referto one or more trigger objectsbut would not contain them. Many
link objects could shae a common trigger declaration. This is similar in conceptto
the way anchorsexistindependently of links, asdescribedin [25].

2.7.8 Resolvingon icts

In some casedriggers presentin a view may interfere with eachother. For example
two ‘instant-to-traverse'links may be active at the sametime, in this casethe system
would needto arbitrate and decidewhich link takesprecedence.

2.8 Composites & Documents

A composite is a collection, or container [100], of distinct items of content. This
sectionexamineghe modelling of this conceptand how it relatesto the experienceof

the user

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 39

2.8.1 Notecads

The basicstructure of Notecards[47] is a collection of nodes(notecards) connected
by links. A notecad can either be an item of content, or can be of the specialised
types, browser' and " lebox'. A browsernotecad displaysa section of the notecard
network and a lebox notecad isacard in which other cards, including lebox cards,
canbe led.

Fileboxes" weredesignedo helpusersnanagelar genetworkofinterlinked notecads
byencouragingthemto usean additional hierarchicalcategoy structurefor storageand
retrieval purposes. [47] providesan exampleuseof leboxes:

“A typical usefor compositescan be seenin the task of writing and or-
ganisinga document (e.g. atechnicalreport) in NoteCards. In this task,
userstypically put the text for eachsubsectionand for each gur e into a
separatecard. All of the cardsfor asinglesectionarethen led in a lebox.
Thesesection leboxes are led in the appropriate chapter leboxes, which
in turn are led in asingle lebox representingthe document. ... Using
the Notecards document compiler, the usercanlinearizethe network into
a single document card containing all of the text and graphicsfor the
documentin the appropriate order but without any hierarchicalstructure.
This document canthen be manipulated, e.g. reador printed, asa single
entity.”

However [47] alsohighlights severalssueswith leboxes, rstly:

“Ther e is a problem, however, in that the document cad is a separate
entity from the “source’ cardsstored in the document's lebox hierarchy:. It
containsonly copiesof the text/graphics from thesesourcecards. Changes
madeto the text/graphics in the document cad are not (automatically)
re ected in the correspondingsource card.”

In other words, content is included "by value' and not "by reference'. [47] recog-
nisesthis and suggestghat composition should be by reference.A secondproblem is
highlighted:

“. ..the usercan seethe entire document at only one level. Despite the
elaborate lebox hierarchy, there is no way to "'zoom' in and out of the
document structure, examiningits contents at different levelsof detail.”

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 40

This suggestghat the usershould be ableto work with the composition mechanism
to control the "depth’ of its included contents (x3.6.12.5).
One further discussionfrom [47] is worth highlighting:

“. .. Notecards usershavefrequently requestedthe ability to referto sub-
networksor collectionsof unlinked cards asunique entrieswith namesand
properties of their own, separatefrom the namesand properties of their
component nodesand links.”

The core part of this statementis “ sub-networker collectionefunlinked cards’. Sofar,

the useof leboxes/composites in Notecards hasbeendescribedwith aview towards
document formation. The ordering of entriesin a lebox card wasusedto form the

linear structure of the resultantlinear document. A compositein this caseis capturing

a sub-network'. However, a collection of cards' is a fundamentally different concept
sincethis doesnot necessarilaffect the lineariseddocument. Considertwo examples:
A compositedescribinga chapterin an authored work would contain the sectionsto

include, and the order in which to include them. Conversely an collection of cards
relating to, for example,horseracingis an organisationaltool and doesnot affect the

output.

For the purposesof this work, the modelling of the rst casesacore requirement,
whilst the secondcaseis a higher-level usertool and doesnot needto be captured.
In this work the term "document’ is usedfor the rst caseof composite above and
“(unordered, semantic)grouping' for the second.Figure 2.10 illustratesthe difference
betweenthesetwo concepts.

2.8.2 Other composite models

In [91] it is stated that modelling compositeswith linking is “sometimepossible
and “ separatestructuring mechanismaregenerallynecessat. The examplegiven de-
scribesa scenariowhere a group of datais semanticallyconnected,in that it is similar
in someregad, and should be kept together. Theseitems of dataare still independent
in that they can be included within other compositesas needed. This de nition of
compositestallies with the de nition of “group' above.In this sensethe arguments

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 41

I
I
I
I
I
-

Document Group

FIGURE 2.10: Documents vs Groups

presentedin [91] makessense sincetrying to maintain groups with linking can be
complex asthe number of instancesa node is usedin a group increases.

In a later work [92] Trigg briey mentions the modelling of compositesusing
links:

“At the moment, the OHP [(Open Hypermedia Protocol)] lacks sup-
port for non link-basedstructuressuchasthe Dexter composite.Although
compositesare not normally thought of astraversablethere are navigation-
like behaviourstypically associatedwith them. For example,one might
interpret a composite asa multi-headed link with a specialized child' di-
rectionality.”

This de nition still does not addressthe issueof ordering within a composite, but
does agree with the idea that generalisedcomposite behaviour is possible using a
broad de nition of ‘linking'. This work arguesthat linking is a perfectly valid and
sensibleway of creating documents. This ideais further discussedn sectionx2.8.3.

In [79] the statementis made* it is clearthat compositesan bemodelledbylinks”
although it then goeson to saythat this is not a natural thing to do. The example
given is that although any Turing-complete programming languageliterally hasthe
samecapabilitiesasany other, people still choosediffering languagesdependenton
their requirements.In other words, although compositescanbe modelled in this way
this doesnot meanit is adesirableor natural action. However, this statementis made

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 42

with [91] asareferencefor why this would not be natural. Again, this is refering to
group creation not document creation.
The view of Dexter [49] regaiding compositesis simply:

“Composite componentsare constructed out of other components. The
compositecomponent hierarchy createdwhen one composite component
containsanotheris restrictedto be adirect-acyclic(sic) graph (DAG), i.e.
no composite may contain itself either directly or indirectly.”

This implies a similar view of compositesto leboxes in Notecards, although the de-
tails are not expandedupon. Note that in the document structure describedin this
work documentscancontain themselveglirectly or indirectly, although animplemen-
tation may chooseto limit the effect of this recursionby setting the depth attribute
(x3.6.12.5).

In [41] aspart of the work on DHM, an extensionof Dexter, compositesare de-
scribedin more detail. Compositesare considered according to four aspect$’: Struc-
ture, Type, De nition and Location. Structure describeswhether the composite is
ordered or not and three examplestructuresare given: Sorted list, keyedtable and
tree.The Typeaspectefersto whetherthe contentsof the compositeare components
(nodes, links, composites)or other data-objects[44] encapsulatedn acontainertype.
The De nition aspectdescribeswhere the classde nitions for the data-typeswhich
describeother factors are themselvesplacedin the composite or are globally visible.
Finally, Location describeswhether the contents of the composite are included by
content or reference.

Of the example Structure types previous listed [41] only describeshierarchical
treesin the senseof either “contentsby reference’ or "contentsby value'. In eachcase
the structure is provided by aclasse.g.:

“In DHM, we haveintroduced a compositetype, the ContainerCompos-
ite, that behaveanuch like directories.The ContainerCompositeis a spe-
cialization of the NonLinkComposite class,.e. it canhold a mixed setof
AtomComponents and other CompositeComponentsand thereby other
ContainerComposites.By meansof ContainerCompositesit is possibleto

9Previouswork [44] considerd threeaspects.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 43

maintain a directory tree like organization of a hypertext, where the hy-
pertext itself becomesthe root directory.”

In WHURLE [71] chunks'are arrangedinto "pages'.A chunk may appearin more
than one page. The order of chunks within a pageis speci ed aspart of the lesson
plan. This correspondsto the de nition of ‘document’ above.

2.8.3 Modellingdocumentswith links

The previousdescriptionof linking actions(x2.5) featured the behaviourof “inclusion'
where content is included in existing content. Consider the casewhere a text node
is affected by two links which include imageswithin it. The resulting effect would
be that shown on the left of gur e 2.10. This raisesa question asto the relationship
betweendocumentsand nodesaffected by linking. For this work the focusis on how
documentscanbe modelled in amannersuitablefor implementation, and sothe data-
structureswhich representnodesand documentsshould be consideed. For discussion
purposestwo typescanbe assumediNodeand Document

There are anumber of approacheso the co-incidencedescribedabove,which can
be representedin data-stuctures.

1. When a Nodeis affected by inclusion it is transformed into a Document Both
Nodeand Documenttypes have equal standing so that a link to a Nodebehaves
the sameway asa link to a Document.

2. There is no distinction betweennodesand documentsin terms of modelling.
The Nodetype is capableof modelling links to other nodes,the Documentype
doesnot exist.

3. The Nodetype is capableof storing links to other items, asabove.However, the
Documentype continuesto exist. In other words, the document “effect' canbe
modelled in two ways.

20This is similar to how compositesin Dexter are components at the same level as atomic
components.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 44

The third option here introducesredundancy which is undesirablefor a standad
processrelating to document modelling and so can be discounted. Regading the
rst two options it is worth examining how the positions within a document can be
captured.

2.8.4 Structureof a document

Consider the document shown on the left of gur e 2.10. There are two waysthese
could be considerd to be structured. Firstly, there is a document structure which
stores“A spanof text for X, the image A, another spanof text from X, the image
B.” Secondly one which stores“The text X containsimageA at position | andimage
B at position J.”

The core difference between these approachesis that in the rst, the Document
type contains structuring information regaiding the relative position of the content,
and in the secondthe Nodetype, speci cally the type for X, containsthe structuring
information.

The “structure-in-Documeritapproachhasbeenusedbefore. For example,in Note-
cadsit isthe simplelinear ordering in the lebox cardswhich determinesthe waythe
linearisedwork appears.

However, considerthe lessconventionaldocument structure shownin gur e2.11.
In this casethe document is formed by replacing a section of the outer image with
the inner image. Note this is just asa valid a document asthe previous example,as
the conceptsinvolved are not tied by de nition to atext-centric view For the effect
in gur e 2.11 to be representedin the Documenistructured approach, the Document
type would require the ability to describea two-dimensional arrangement.

A further examplemay be a document basedaround a video clip, where animage
isincluded asa frame. Again, the Documentype would be required to describeareas
of the video. However, in eachof thesecaseghe Nodetype would alreadyhavethe
ability to describethe areasconcemed, since this type must already work in these
“dimensions'. Therefore, by expandingthe Nodetype to allow the inclusion of other
nodes, the requirementfor acomplex Documentype is avoided.Note that in practice

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 45

FIGURE 2.11: Image-in-imagedocument

there would not normally be a single Nodetype which capturesall media which can
referenced, but the type would contain an expandablelist of other types, of which
eachdescribesa mediatype (x4.3.4.2).

For this reason,and the added simplicity of working with a single data-type for
both concepts,this work is basedon the idea of document formation through the
application of linking actionsto nodes, and doesn't distinguish the document type
from the node type.

In somecasest may be desirableto createa sub-classof the Nodetype to sewe
purely asa containerand not to representatype of media. This type would be struc-
tured in such asway asto allow the useful position of Nodetypes within a given
number of dimensions.This type would still be distinct to that of the Documentype
previouslydiscussedsinceit would not be required to model the position of all types
in all casesandis not arequirementfor document formation. Rather, this type would
re ect the fact that some Nodesub-typeswould make more useful containersthan
othersin terms of achievingan aestheticeffect.

2.8.5 Autharing vs.incidence

The concept of a 'document’ describesa node which hasbeen affected by a linking
action. For example,anode which hasa paragraphremovedby an actof linking would
be adocument.

There are two waysa document can be created, ‘authoring' and “incidence’. Au-
thoring describeghe casewhere the particular arrangementof the document hasbeen
pre-speci ed. For example,the hypemediaauthor may de ne a pagewith a pieceof

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 46

text and two imagesplacedat certain locations, similar to gur e 2.10. The images
here would presumablybe linked using the action “include' and the trigger event of
instant . This is considered to be an "authored document'.

Now considerthe casewhere a single node — or multiple nodesin a document
— hasalink assignedwvhich usesan electiveaction suchasclick . When activatedthis
link replacespart of the displayednode with new content. The result of this action
would be a new document. This is considered to be an “incidental document'. This
document may be further affected by links declaed on the new content and soon.

Note that "authored' and ‘incidental’ are termsusefulfor discussionpurposesonly;
the datatype which describeshe two resultsis the samein either case.An authored
document can be recalledby presentingthe outermost node. The linked in content
will be included automatically?. Incidental documentsrequire the original document
and the path of links to activate?.

2.8.6 Terminologysummay

It is worth clarifying the use of terminology for the conceptsdiscussechere. ‘node'

remainsa description of a single mediaitem. However in practicea node cancontain

other nodesat which point it becomesa "document' in concept, although the same
data structure, Node is usedin both casesA “document' is a node affected by the

effectsof linking in someway This term excludeseffectsprior to the executionof the

linking-action, suchasthe appearancef an on-screenmarkerto denote the existence
of atrigger (x2.7). The term "composite'is retainedto describeeither an ordered or

unordered collection of nodes.

2.9 Open Hyper media

One of the stated aims of this work is that any design should support the use of
multiple client applicationsto accesghe hypemedia system.This requirement ties

2lparametergcontrolling the displayof the document may excludelinked-in content (x3.6.12.5).
22|n an adaptive systemwhich introduces and excludeslinks dynamically recall of an incidental
document may not be possible.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 47

in with the ideaof "open hypemedia'. It is worth examiningcommon de nitions of
open hypemedia.

“An open hypemedia platform supports inter-tool linking asa meansof
integrating distributed heterogeneoustools and data formats. Systemde-
velopersare supplied with an open systemarchitecture including a link
sewice and a storagesubsystemtypically refered to asa hyperbaseman-
agementsystem(HBMS). The link sewviceprovidesacommunication pro-
tocol allowing thir d-party distributed heterogeneoustools to participate in
hypemediasewices(anchoring and linking capabilities.”[102]
This de nition encompassemany of the common themesrelating to the concept

of open hypemedia, namely:

Distributed tools — A number of separateclient applicationscanexist.

Heterogeneoustools and data formats — The client applicationscan be very
different from eachother and their dataformatscanalsodiffer greatly

Link sewice— The systemprovidesa 'link sewice' which provideslinks to par
ticipating clients: “ At its simplesta hypemedialink sewicetakesa souceanchor
in a multimedia documentand returnsthe possibldestinationanchorspbtained
byinterrogatinga link databasée] 29]

Communication protocol — A standad protocol is de ned betweenthe clients
and hypemediasystem.

“The consensusof the OHSWG [(Open Hypermedia SystemsWorking
Group)] has been that openhypemedia systemsallow an open set of
clients of the hypemedia sewicesprovided by the system.No assump-
tions about the clients (such asdatatypeshandledetc.) are made.” [79]

This de nition emphasiseghat the systemneed not know anything about the
clientsin an open hypemediasystem.Pedantically this not true sincethe systemwiill
know that the clients conform to the communications protocol described.In terms
of knowing whether the clients can handle a particular data-type, this information is
usefulto the systemasit can affect the presentationof documentssentto the client.
In sectionx3.6.11 a method is describedwhere the systemcantailor the documents

produced accoing to the capabilitiesof the client concemed.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 48

“Open hypemediasystemsypically provide different middleware sewices
such ashypemedia authoring, hypemedia browsing, collaboration, and
distribution. Thesesewicesare provided through acommon interfacethat
allows an open set of desktop applicationsto make use of the sewices.”
[101]

This de nition explictly adds authoring and collaboration as concems. Author-
ing is outside the scopeof the current areaof reseach. Collaboration is a userlevel
tool, similarto groups (x2.8.1), and so is not directly relevantto a consideration of
fundamentalbehaviourimplementation.

“The term “open hypemedia' cameto be associatedwvith the provision
of ahypertext sewicewhich enabledclient applicationsto create,edit and
activatelinks which were managedin separatdink databasesit contrasted
with the monolithic approach to hypertext systemsin which the func-
tionality of both dataand link managementwasprovided within a single
indivisible application.” [19]

In the rst clauseof this description,andin particular “in separatdink database$
it is not clear from what the link databasesare separate.lf they are separatefrom
eachother, then this matchesthe requirement to considerlinks from many sources.
However, the secondclauseimpliesthat link managements separatedrom dataman-
agement. This interpretation matchescommon open hypemedia examplessuch as
Microcosm[35] where the client application is responsiblefor the data and the hy-
permedia systemthe links. For example,a usercantype directly in a Word processor
and use the linking facilities of the hypemedia systemto annotate that work with
links.

Such a view presentssome problemsto the approach detailed in this work. Re-
member that linking is a fundamental part of document formation and links are not
usedsimplyto makenew content appear in this casepossiblyin aseparateapplication.
If the full range of links asdescribedpreviously(x2.5) were supplied separatelyfrom
the data,then the client applicationswould haveto be capableof document formation
themselvesFurthermore, the clientswould needto be ableto interpret all referenced
data-types.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 49

Rather than working asa pure link sewice, the work here describesa "document
sewice' which returns completed documents’® alongsiderelevanttriggers (x2.7) for
the client to declase.

Finally, considerthe following de nition:

“The term openimplies the possibility of importing new objects into a
system.A truly open hypemediasystemshould be open with regad to:

1. Size It should be possibleto import new nodes, links, anchorsand
other hypemedia objects of any limitation, to the size of the ob-
jectsor to the maximum number of suchobjectsthat the systemmay
contain, being imposedby the hypemediasystem.

2. Data Fomats. The systemshould allow the import and use of any
dataformat, including temporal media.

3. Applications The systemshould allow any application to accesshe
link sewicein order to participate in the hypemediafunctionality.

4. Data Models The hypemedia systemshould not impose a single
view of what constitutes a hypemedia data model, but should be
con gurable and extensiblesothat new hypemediadatamodelsmay
beincorporated. It shouldthus be possibleto interoperatewith exter
nal hypemediasystemsand to exchangedatawith extemal systems.

5. Platforms It should be possibleto implement the systemon multiple
distributed platforms.

6. Users The systemmust support multiple users,and allow eachuser
to maintain their own private view of the objectsin the system.

" [26]

The issueof "data formats' ties in closely with the direction of this work. The
requirement for “"datamodels’ is alsoconsidered, albeit by being model agnostic.For
“applications',this work supports the ideathat anyapplicationshould be ableto access
the system,by providing support for arangeof interfaceoptions

The issuesf “size'and "users'are usefulgeneralconsiderationsbut not keyto the
reseach. For “platforms’, how this correspondsto this work dependson the de nition
of 'implement’, certainly there should be not restrictionson the platforms usableas
clients. However for the hypemedia sewer itself, restrictions are tolerable sincethe
restriction will be placedon the administrator of the systemrather than on end-users.

23A document may of coursebe a short sectionof anode, e.g. asentence.

2. HYPERMEDIA BEHAVIOURS AND EXPERIENCES 50

2.10 Conclusion

This chapterhasexaminedcore conceptsof hypemediaand for eachhasdescribeda
common view. Thesecommon viewswill not map directly onto evely existing hyper
media systemor discussion but rather form atool-kit for the developmentof system
implementation models.

51

CHAPTER 3

MODELLING HYPERMEDIA
IMPLEMENTATION

3.1 Overview

This sectiondescribeghe evolution of work to developamodel for hypemediaimple-
mentation. The focusof chapter2 wason the behavioursand conceptsof hypemedia,
while the focus of this chapteris the mechanics,and a method by which a developer
canimplement behavioursand concepts.

The modelling work describedhere wasdevelopedin parallelto Goate (x4), with
the various models presentedhere relating to stagesof developmentin Goate. The
nal model presented,Meles, providesa complete approachto the scopeof the work.
The previousmodels are discussedasthey show how developmentwasshapedand
how the design of Meles has been affected by issuesencountered with other ap-
proaches.

3.1.1 Scope

Note that the scopeof this work differsfrom the scopeof most hypemedia models.
This work is focusedstrongly on the concept of hypemediaimplementation Given
that alink speci cation exists,the questionarisesf how that translatesnto something
the user can use, and when activated, how the link affectsthe user'sview onto the
hypemedia.

3. MODELLING HYPERMEDIA IMPLEMENTATION 52

Runtime

Pres Spec

Storage

Anchors
Within
component

FIGURE 3.1: The Dexter Model

The models presentedin this section cover varying amounts of the “greater hy-
permedia application'. The greater hypemedia application is the entire systemfrom
node creation and editing, link speci cation, storagesystemdor nodesand links, user
accesgontrol etc. aswell asthe implementation of hypemediabehaviours.

Note that this work does not seekto model existing hypemedia systems,but
rather provide a development framework for future highly extendable hypemedia

systems.

3.2 Related work

Chapter 2 examinedindividual conceptsrelating to hypemedia. These discussions
referedto anumber of existinghypemediasystemsand designs.In this sectionentire
systemsand models are evaluatedagainstthe requirementspresentedpreviously

3.2.1 Dexter

The Dexter hypertext referencemodel [49] is arguably the most successfuattempt to
model the underlying designof hypemedia systemq 24], and hasbeenthe theoret-
ical basisfor alarge number of implementations and extensions[30], [36] and [44]
among many others.

The model consistsof threeprinciple layers:Runtime, Storageand Within-Component.
Additionally there are two “glue layers': Presentation speci cations and Anchoring.
The Dexter model is shownin gur e 3.1.

3. MODELLING HYPERMEDIA IMPLEMENTATION 53

3.2.1.1 Structure

The Storagelayeris the focus of the model and containsa number of ‘components'.
Eachcomponentis an "atom’, “link' or "‘composite'. Each component in the Storage
layer has a globally unique identi er (UID) which is used for anchoring purposes
(x2.6.1).

The atom type is simply anode (x2.3). The structure of anatom is not the concem
of the Storagelayer, but rather of the Within-component layet

The Within-component layerdescribesthe structure of atomic components. The
structure of thesecomponentsis not elaboratedon in the model.

The Runtime layerdealswith “instantiations', that is the presentationof a compo-
nent or componentsto the user:

“Operationally, aninstantiation should be thought of asakind of runtime
cachefor the component. A “copy' of the component is cachedin the
instantiation, the userviewsand/or editsthis instantiation, andthe altered
cacheis then “written' backinto the storagelayetr” [49]

A core part of the Runtime layeris a “instantiator function'. When a userconnects
to the systema "session'is created. The instantiator function createscopiesof com-
ponents,asdescribedabove,within this sessionThe Presentationspeci cations,both
those suppliedto the instantiator function and thosethat existwith every component
in the Storagelayer, affect the mannerin which a component is presented.An op-
posite function, “realizer' commits changesin the sessiorbackinto the Storagelayet
For example,a sessiommay createlink componentswhich are then written backinto
the Storagelayer

3.2.1.2 Summary

The Dexter model has been widely acceptedand has certainly ful lled the role of
‘referencemodel'. The model additionally hasthe intellectual weight of being based
on existing hypemedia systems.However, when analysedagainstthe requirements
for this work, the model hasa number of shortcomings:

1The instantiation of anchorsproduceslink markersasdescribedin sectionx2.7.

3. MODELLING HYPERMEDIA IMPLEMENTATION 54

Dexter doesnot explicitly considerthe creation of links. It may be possibleto
de ne links by useraction within the view, but retrieving links for alink-baseof
somedescriptionis not covered. This leadsto issuesof link parsingdiscussedn
sectionx2.6.1.

Dexter doesnot discusscompositesin any detail, implying that only a hierarchi-
cal structure exists,asdiscussedn sectionx2.8.2.

Inclusion, replacementand removallink actions(x2.5) are not discussed.
No support for separatedriggers (x2.7).

The attempt to maintain strict boundariesbetweenlayersleadsto issuessuchas
those describedin x2.6.1.

3.2.2 AHM

The Amsterdam HypermediaModel (AHM) [51] isanextensionof the Dexter model
and specialisesn modelling relating to multi-media presentations.Hardman et al.
makea distinction betweenthe terms "hypertext' and "hypemedia’:

“A hypertext is modelled asa network of componentsrelatedthrough a
setof links anchored in source and destination components.. . . Note that

the meaningof visiting acomponent — that is, the visualeffectsdisplayed
to the userin terms of piecesof text, graphics,sounds,and so forth —

is usuallyconsidered an internal property of the data....[In multimedia]

the componentsare meantto be presentedin some author-de ned rela-
tive order. The existenceof suchan ordering relationship dependson an
explicit notion of time in the model. While the userstill may havecontrol

over the selectionof componentsto be visited, the components selected
and presentedcanchangewithout direct userintervention becauseof this

motion of time. ...[One] way of combining hypertext and multimedia
[is] having eachcomponent of the hypertext model be a self-contained
multimedia presentation.” [51]

In this de nition, "hypertext' isalinked structure of componentswhere eachcom-
ponent may havea time component, but this component is still fundamentally inde-
pendent. "Multimedia' is a single presentationof components where the placement

3. MODELLING HYPERMEDIA IMPLEMENTATION 55

of eachcomponent can be placedalong a time-axis. ‘Hypermedia' is a linked struc-
ture of multimedia presentations.Note that this is different from the de nition of
"hypemedia’ usedthroughout this thesis,which treats ' hypemedia' asa synonym of
“hypertext'.

AHM allows atomic componentsto be placedin a modi ed composite structure
which de nes relative timing points. For example,a video clip can be con gur ed to
play in parallel or after another clip. Synchionisation arcs can be de ned between
componentswhich form arun-time constraint on the ordering of components.

AHM also introducesthe idea of 'link context’, previously discussedn section
x2.7, allowing partial replacement.

3.2.2.1 Summary

The Amsterdam model hassomeadvantage®ver the plain Dexter model, particularly
in the introduction of link contexts. However, aspreviouslydiscussed]ink contexts
do not provide the full range of trigger behaviours.In other respectshe Amsterdam
model is broadly similar to the Dexter model in terms of limitations. One noticeable
shortcoming which is preservedin the Amsterdam is the lack of a explicit method for
positioning componentswithin a pageor screen.

3.2.3 Microcosm

Microcosm [35][50] is an open hypemedia systembasedaround the "Microcosm
model'. The Microcosmmodel consistsof two layers,the Document Control System
and Filter ManagementSystem.

“...[The] front end of the current system[is] a setof document viewers
of supported media. Theseviewersare managedby the Document Con-
trol System(DCS), which dealswith starting new viewers,and infor ming
viewersof documentsto be displayed.

...[The] processingof message$rom document viewers. .. [is handled
by a] taskcalledthe Filter ManagementSystem(FMS). In turn, the FMS
managesa set of tasksthat provide all messageprocessingfunctionality.
Thesetasksor " lters' processnessagewith certain actions.The FMS re-
ceivesnessagefrom document viewersviathe DCS (for example Follow

3. MODELLING HYPERMEDIA IMPLEMENTATION 56

O
H‘ Q

O

Vlewers Filters

FIGURE 3.2: The Microcosmmodel

Link', "Make Link' etc.) and passeshem on to the current setof lters.
The logical structure of [the] model isshownin gur e[3.2].” [57]

3.2.3.1 Summary

The Microcosm model is interesting since systemsbasedon this approach are ex-
pandablein a practicalway Whilst other models may claim expendability by merely
compartmentalising different conceptsof hypemedia, e.g. storage, display etc., the
Microcosmmodel considerspracticalissuesof how a hypemedia systemwould actu-
ally work.

There are obvious omissionswhen the requirementsof this work are considesed,
e.g. the range of linking actions supported, the lack of triggers etc. However these
limitations are not in themselvesa fundamental design failing of the model, and a
particular implementation could expandon theseareas.

One possibleissueis the “straight line' execution path of the FMS. Consider the
implications of implementing inclusion asa method of document formation. When
a node includesanother node, the referencednode would alsoneedto be processed
by the lters. This processingmay yield another node that needsprocessing.This
possibility leadsto the suggestionthat the FMS processshould be recursive(x3.6.12).

The model does not consider the mixing of different media types. Rather, the
DCS will open an appropriate viewer for eachtype. The considerationsin this work
have discusseddocuments formed of various media types, and so a model for these
purposesshould supported mixed mediadocumentsand how they canbe formed and

3. MODELLING HYPERMEDIA IMPLEMENTATION 57

handled (x3.6.10).

3.2.4 OHP and OHP-Nav

The Open Hypermedia Protocol 1.2 [26] is a communication protocol designedfor
usebetweenclientsand hypemediasystemsThe protocol is similarin conceptto the
messagepassedaround Microcosm.Note that OHP de nes only thesemessageand
not the generalarchitecture of a system.

[26] discusseshe useof “shims'to convert from the OHP to the native form of
the systemand client. Other discussiong 3] have suggestedthat shims may not be
necessar asmany systems/clientswill support OHP natively However, the conver
sionto ancommon format is aninterestingone, and the sameapproachcould be used
regaiding Environment module to client communication in Meles(x3.6.11.2).

The core setof messagesentto the client from the systemis a LaunchDocument
command which instructs the client to open a node. The client may either retrieve
the node itself or requestit from the link sewer using the GetNodecommand. Note
that the secondoption is only availableif the node datais stored within the link sewer
itself, i.e. for all other casesa client is expectedto be able to handle the protocols
involved.

After a client displaysa node it canrequesta list of anchorsfrom the sewer, and
whenone of the “sensitiveareas'associateavith ananchoris activatedthe client signals
the sewverwith a RequestServer command.

After OHP 1.2 the OHP wasrede ned to capture, in principle, all hypemedia
behaviours.OHP would consistof a number of other protocols, and one of these
is OHP-Nav [23] which relatesto navigationalhypemedia behaviours.OHP-Nav is
designedto haveawider scopethan OHP 1.2:

“This version of the protocol hasgrown much “fatter” than the earlier

version,re ecting the group's desire to aim towards a protocol that could
representall navigationalhypernext features,rather than a subset.”

However, [23] alsostatesthat:

3. MODELLING HYPERMEDIA IMPLEMENTATION 58

“However, we are not attempting to model the systemshat havepartic-
ular featuressuchastransclusionsin Xanaduor spatialhypertext systems.
Thesesystemswill probably needto designtheir own interfaces.”

Whilst spatial hypertext is outside the scopeof this thesis, transclusionis not. The

fundamental action of transclusionis that of inclusion, which this thesisconsidersan

important modelling aspectand a part of the de nition of "navigationalhypemedia'.
For the purposesof this work OHP-Nav is similarin scopeto that of OHP 1.2.

3.2.4.1 Summary

The major limitation of OHP againstthe requirements of this work is that OHP
is purely a description of a protocol for the client-to-system communication. OHP
doesnot describethe overallarchitecture of a hypemediasystent or the approachby
which the systemgeneratesdocumentsfrom nodes.

However, OHP is relevantfor the system-to-clientmodelling and translatesquite
well to theserequirements(x3.6.11.2, x3.6.11.5, x3.6.12.1). There are someissues,
for examplethe usein OHP 1.2 of from', "dest' and "bidirect' attributes in an-
chors where thesedo not haveany purpose from an implementation point of view
(x3.6.13.1). A similar comment wasmadein [3].

For this work the client should not needto retrieve any nodes, and should only
needto communicate with the system.So whilst OHP 1.23 supports the supplying
of node dataasan option for someinstances,for this work this should be the only
method of node retrieval. Also note that the format of node datasuppliedimpliesdata
of aknown MIME-type asopposedto arbitrary juxtapositionsof content.

3.2.5 OHRA

The Open Hypermedia Reference Architecture (OHRA) [40] is a design model for
integrating multiple open hypemedia systems.
The papercommentsthat a protocol suchasOHP is insuf cient:

2Although it mayimply one to someextent.
3[23] doesnot describethe processof node retrievalin OHP-Nav but leavesroom in the standad
for this to be de ned later.

3. MODELLING HYPERMEDIA IMPLEMENTATION 59

“During discussionoon OHP at the OHS 2.5 workshop, it soon became
appaent that this solution would prove inadequate.Although the pro-
tocol shim would enablethird party applicationsto access link sewer
residing on a remote machine,the rich setof tools (e.g. navigation) that
accompanymost contemporary hypemedia systemswould no longer be
availablewith the user'senvironment.”

Unfor tunately the the authors do not elaborate on the de nition of “navigation'.
However, the implication is that a protocol cannot supply the associatedtools of
hypemedia, for examplelink creation sewices.The paperarguesthat an altemative
approachisto usean ‘runtime' on the client machineto provide thesesewices.This
runtime can take many forms. It may be speci cally authored runtime for that par
ticular client platform, it may be a dynamicallyrequestedmodule to run on avirtual
machine,e.g. Java,or it maybe a hypemediasystem.

OHRA describes,but doesn't de ne a number of protocols. The “viewer proto-
col' “hasan almostidentical purposeo that of theoriginal OHP in that it will enable
third party applicationsto communicatewith the runtime componerit The “hyper
media protocol' provides an interface betweenthe runtimes either directly or via a
central “collaboration sewer'. Additionally a “collaboration protocol' betweenhyper
mediasystemsdocument managementsystemsand the collaboration sewer, provides
collaboration sewices.Finally, the "document managementsewice protocol' provides
an interfacefor document managementservices.

3.2.5.1 Summary

The valueof OHRA isin the modelling of interaction betweenhypemedia systems.
Without detailed implementation detailsit is dif cult to cometo conclusionsregad-
ing the effectivenesof the design, howeverthe principlesappearbroadly sound for a
particular approach, although inter-systeminteraction is not afocusfor this reseach.
The argument that aruntime is neededon eachclient islessconvincing. In relation
to the unsuitability of purely a protocol, the paperstates:
“One solution is for the userto run a X windows sewer on their machine

and thus allow the display of the link sewice tools to be redirection to
their own screen.”

3. MODELLING HYPERMEDIA IMPLEMENTATION 60

It should be noted that X itself is simply a protocol and therefore, given that hyper-
media viewersare possibleon X/UNIX system$, it must be possibleto havethese
behavioursover a network protocol. However, X is not a protocol that attemptsto
model hypemedia behavioursin any way, instead describing the transfer of visual
items and the handling of events.In section x3.6.11.1 the requirementsfor hyper
mediaimplementation in this work are discussedThe approach here doesnot argue
for any particular protocol, and either hypemmedia descriptive (e.g. OHP) or non-
descriptive(e.g. X) are possibleoptions.

3.3 High/low model

3.3.1 Scope

The rst attempt of this reseach in modelling hypemediaimplementation considered
a very limited view of linking. Single-destination, uni-dir ectional linking wastaken
asthe baseand three desirable behaviourswere identi ed - bi-directional linking,
multiple destinationlinks and links where the focuspoint within the destinationcould
be arbitrarily speci ed.

Regading the nal of those behaviours,the format of exible destination spec-
i cation wasnot explictly considered, but presumablywould allow a sufx attached
to the URL which would specifya byte, word or paragraphoffset. For example,a
modi ed URL maylook like: http://server/file[paragraph=4]

As well asoffsetsthe destination could be speci ed with a seach or other query:
http://server/file[search="some text"]

3.3.2 Theay

The threebehavioursaboveare labelled high levellinking' ®. This work examineshow
to implement high-level linking on a more limited platform, in this casethe WWW.

4The X displayprotocol is consistentregadlessof whether the applicationis being run on the same
machineasthe client or over the network.

5This term haspersistedto later models(x3.5, x3.6) although what would be considered high level
changeddramatically

3. MODELLING HYPERMEDIA IMPLEMENTATION 61

Theseideaswere describedaspart of the papers“Goate: XLink and beyond” [62]
and “Goate: An infrastructure for new Web linking” [61].

The limited implementation platform wasintended to supply ‘low level linking'
support. The principle is that a high-level concept can be transformed to a low-level
conceptthrough atranslation process.The low-level representationmay lose the se-
mantic intent although the measurableeffect of the two versionswould be the same.

This is similar to the way programming languageswork. The C++ programming
languagewould be consideed high-level whilst assemblylanguagewould be consid-
ered low-level. It is equally possiblyto accomplishany programming taskin either
C++ or assemblylanguage,and in fact a compiler will convert C++ source code into
assemblyanguage . However, the assemblyanguageversionwill losestructure present
in the C++ versionand will be more dif cult to developin or modify.

As an example,considerhow looping is handled by the two languages.C++ pro-
videsthe constructs of for , while and do-while eachon giving a slightly different
emphasisallowing the programmerto closelymatch their intention. In addition C++
providesgoto to jump to anarbitrary location. Assemblylanguagetypically only sup-
plies a single construct correspondingto goto. It is possibleto re-factor any of the
C++ looping constructs using goto along with if . Considerthe following C++ loop:

for i =0; i <10; i++) f
body
g

This canbe re-factored with assemblylanguagelimitations® as:

i =0;

‘label

j =i - 10;

ifzero(j) goto end;
body

i++;

goto label,
-end

5This exampleis actually slightly kind to assemblylanguagein that it presumessimple variable
handling.

3. MODELLING HYPERMEDIA IMPLEMENTATION 62

Again, thesetwo forms have equivalenteffect. Note that aswell asbeing harder
to read,the pseudo-assemblyersionhaslost the structure of the loop, and it is not
possibleto determine the type of loop originally used.

The high/low model simply statesthat given asuitably expressivdow-level linking
languageany high-level linking behaviourcanbe expressed.

3.3.3 Low-levelrequirements

The requirementsfor the low-levellinking languagedependon the rangeof high-level
languagesthat needto be modelled. In sectionx3.6.11.1 this topic is revisited with
the changein high-level de nition introducedby Meles(x3.6). However, considering
the de nition of high-level shown above and the implementation environment of
HTML/WWW the conversionfrom high-to-low levelform canbe caried out in the

following way:

Behaviour Emulation

Bi-dir ectional link Two uni-dir ectional links pointing to
eachother.

Multiple destinations n uni-directional links starting at a

common point.

Flexible destination speci cation | Placementof a
tag at the appropriate point in the des-
tination document. The sourcelink in-
cludesthis label aspart of the destina-
tion speci cation.

The rst and third of these emulations requires write accesdo the destination
document, which for a document on the WWW will typically not be available.This
issuewasside-steppediy usingaHTTP proxy to alter documentsasthey pasghough,
effectivelywriting at point of delivery (x4.4.3.1).

3. MODELLING HYPERMEDIA IMPLEMENTATION 63

Source

Language

CLS

Display

Movement

FIGURE 3.3: Nottingham model

3.4 Nottingham model

The Nottingham model wasan attempt to expandon the high/low model by sepa-
rating the linking processin severallayers.The Nottingham model is representedin
gur e 3.3.

The concept of Source capturesthe link asstored in some arbitrary storagesys-
tem. There may be multiple instancesof Source componentsin a system.Language
describeghe link speci cation extractedfrom a Source.

CLS is an intermediary form of link speci cation which is neither representative
of any particular high-level link speci cation nor tied closelywith implementation.
Instantiations of the Languagelayerwould createlink speci cationsin this form and
instantiations of the Display and Movement layerswould interpret them for the rele-
vant implementation environment. There is only one CLS instancein a system.CLS
becamethe Inter mediatelayerin SLIPA andthe conceptisdiscussedurther in section
x3.5.4.

Displayrefersto the generationof code which stylesthe link. This wasexpectedto
include, for example,the codeto makea multiple-destination link “pop-up' on screen.
Finally, Action refersto the generationof the instruction to makethe link active,e.g.
the actual<a href> tagin the caseof HTML.

3. MODELLING HYPERMEDIA IMPLEMENTATION 64

Source

Embedded Link-base Link-base

. Lang .u.a.éé ...
<a href> XLink WHURLE

CL s ..

Dlink
Dlsplay ...
Pop-ups and link shading
Movemen t ...
<a href>

FIGURE 3.4: Exampleimplementation of the Nottingham model

3.4.1 Multiple languages

Figure 3.4 wasoriginally included in a presentationgiven to the Web Technology
Reseach Group when introducing the model. The gur e showshow a systembased
on the model canincorporate many link speci cation languagesobtained from many
sources. Dlink' wasa data-typeusedin Goate at this time to hold the effect of links
in acommon format.

3.4.2 Summay

A number of problems are encountered with this model. Firstly the model implies
“strong layering' which is not applicable.Strong layeringis shown by the 7-layer OSI
network model [80], the layersof which are shown below with abridged descriptions
from [89]. The readermay nd it easierto readfrom the lowestlayerto the top.

3. MODELLING HYPERMEDIA IMPLEMENTATION 65

Layer Description

Application | Providesa mechanismfor applicationsto interface
with the OSI stack.

Presentation| De nes the format of datato be exchangedbe-
tweentwo applications.

Session Controls the "dialogue' betweenapplications.
Transpott Providesamechanismfor the exchangeof databe-
tweentwo systems.

Network Handlesthe passingof databetweentwo systems.

Datalink Provides error detection and control over the
physicallayer

Physical De nes how bits are passedetweendevices.

Each layerin the OSI model builds on the abilities of the one beneathit. Each
layerprovidesan "API' to the one aboveit which abstractsghe implementation details
of the layer The principle is that instancesof eachlayertype canbe interchangedwith
no effect on the instancesaboveand below. Similarly, no layershould require details
of the workings of lower layers.

The cumulative effect of the OSI model is lacking in the Nottingham model.
For example,it is not obvious that the conceptof "Source' builds on the abilities of
“Language’, or that "Display' builds on "Movement'. Rather the Nottingham model
isreallydescribinga processingow . SLIPA makesthis distinction cleat

Furthermore, it is doubtful how interchangeableinstancesof the layersactually
are. For example,both Display and Movement are tied closelywith a particular im-
plementation environment and it is not clearthat an instanceof one of theselayers
could be replacedwithout replacingthe other. Again, relating to Display and Move-
ment, the necessar information for Movement is not passeddown through Display,
which only generatescode relevantto the styling of the link. Theseissueswere not
satisfactorilyaddresseduntil the Meles model.

The data ow in the OSI modelis 2-directional,i.e. datapasseb®oth up anddown
the model. In the Nottingham model there isno "upward' ow of data.

Due to theseproblemsthe Nottingham model asdescribedhere wasshort-lived
and wasdevelopedfurther to becomethe SLIPA model (x3.5). However it is worth
rememberingthat the model did intr oduceanumber of conceptswhich havepersisted

3. MODELLING HYPERMEDIA IMPLEMENTATION 66

through SLIPA andinto Meles (x3.6):

Separationof link speci cation from the implementation of the speci cation.
The conceptof adistinct source which storeslink speci cations.

The Nottingham model suggestedthat link-speci cations were extractedfrom
a Source and processedy Languagecomponents. This idea persistedin SLIPA
and Meles.

The ideaof multiple, simultaneously-activdink languageprocessors.
The ideathat multiple languagesnay shae a common source.

The use of a common intermediary format to describelinks to allow inter-
operation betweenunrelatedlink processingand link implementation sections.

3.5 SLIPA

The SLIPA model built on the ideasof the Nottingham model (x3.4). The goal for
SLIPA wasto addressthe shortcomings of the Nottingham model discussedn x3.4.2
andto provide acomplete approachto link implementation.

The SLIPA model consistsof the ve “layers'shownin gur e 3.5. The initial of
eachlayeris taken to give the model its name. An instantiation of a layeris calleda
component.

The term “layer' is presewved from the Nottingham model, although SLIPA does
not claimto be strongly layered. The model is uni-dir ectional; there is an infor mation
ow down the model but not upwards.

3.5.1 Link actions

SLIPA de ned two linking actions:traversaland inclusion. Traversais simply the re-
placementof the current view with adifferent view Inclusion wasde ned asincluding
the target in the current view, with the note that the target may or may not replace
a section of the current view This de nition of inclusion is closerto the de nition

3. MODELLING HYPERMEDIA IMPLEMENTATION 67

Source

4

Language

4

Intermediate

4 N

Presentation Action

FIGURE 3.5: The SLIPA model

of ‘replacement'which is introduced asa generallink action in sectionx3.6.1. The
model recognisedthat the separateaction of calling an extemal program, although
this wasnot captured aspart of the model.

SLIPA de ned threelink direction behaviours.A link maybe uni- or bi-dir ectional,
or haveno direction bias. A uni-dir ectional link, asexpected,allows movementfrom
a—b but not b-a. A bi-directional link allows movementfrom either end-point to the
other.

A non-directional link behavessimilarly to a uni-directional link, the difference
being semantic.To mark a link non-directional is to saythere is no concept of nav-
igation. For example,imagesare included in WWW pagesby an act of linking, this

would be an exampleof non-directional linking.

3.5.2 Sourcelayer

In SLIPA the Source layerrepresentsthe data-store containing the link speci cation.
This store cantake manyforms. In caseof embeddedlink speci cations,e.g. HTML,
the Source is considered to be the document itself, although more accuratelythe

sourceis a subsetof the document. The Source could equallybe a dedicatedlink-base

3. MODELLING HYPERMEDIA IMPLEMENTATION 68

[35][20] or acollection of link-generating rulesto apply[59].

In implementation terms the Source component will often be an interfaceto a
data-store rather then the entire data-stor itself. For example,given links stored in a
relational databasethe Source component would provide a setof routinesto retrieve
links from the extemal databaseThe API presentedby a Source component should
be known and documented, allowing anyLanguagecomponentsin the systemto have
accesssneeded.

Note that SLIPA doesnot de ne or model the structure within Source compo-
nents.

3.5.3 Languagdayer

The Languagelayer contains processingfunctions that evaluatelinks of a particular
speci cation. Therefore aLanguagecomponent must be able,when given ahypeme-
dia (or a subsetof a hypemedia) and a collection of link speci cations, to locate the
endpoints of the links.

A Languagecomponentretrieveslinks from one or more Sources.For HTML the
Languagecomponent would draw from a single Source, the document itself, whilst a
XLink [31] component would additionally referencea link-base.An examplesystem
implementation may look like gur e 3.6”. This is similarto the top part of gur e 3.4,
although the Nottingham model only considersgeneralownership of rolesand does
not seekto explaindetailed processes.

The Source and Layerstogether are namedthe “User Languagelayers”, signifying
that these are the areaswhich deal with linking speci cations as used by the link
authors.

A Languagecomponentuseshe API presentedby a Sourcecomponentto retrieve
the raw, i.e. “asstored', links®. This is a conceptualdata- ow, asin terms of imple-
mentation the Language component(s) may call the Source component(s) directly,
or equally the enclosingapplication may call the link retrieve function in the Source

"Note the changeshetweenthis view of the relationshipbetweenSource and Languagecomponents
to that in x3.6.8.
8This raw format may be atext string, a databaseecord etc.

3. MODELLING HYPERMEDIA IMPLEMENTATION 69

Source
Linkbase Content
;. Langu .a.g.e.
XLink HTML-link

FIGURE 3.6: Examplelink components

component and passt to the link evaluatingfunction in the Languagecomponent.
The Language component declaesone or more IDOs, asdiscussedn the next
section, using the API asde ned by the enclosingapplication.

3.5.4 Intermediatdayer

The Inter mediatelayeris a representationof links independentof the User Language
and Implementation layers(x3.5.6, x3.5.7). Data objects named Inter mediate Data
Objects (IDOs) are createdin the Inter mediate layer by the Language components
calling API functions. The Inter mediatelayeris the equivalentof the CLS layer(x3.4)
in the Nottingham model.

EachIDOrepresentsa single one-to-one link. From this basismore advancedink-
ing behaviourscanbe built by the useof multiple objects(x3.3.3). In somecasedsDCs
will “overlap' a certain area, i.e. a given point may be captured by a span member
of more than one IDO object. Given links imported from a number of sources,the
overlapping may come from a single source link, e.g. a multiple destination link, or
could be entirely coincidental, e.g. two uni-dir ectional links which happento referto
the samearea.

Rememberthat the IDOformat treatsall links asindependentand doesnot pre-
sewve the semanticintent of the original link speci cation. That is, when examining
one IDOIt isnot possibleto tell whetherthat IDOis part of abi-dir ectional link and/or
a multi-headed link. This effect is neither deliberate nor a failing of the model com-
pared to the higher level structure discussedn sectionx2.4. The semanticintent by
this stageof link processingis no longer relevant,asthe Inter mediate stageis con-

3. MODELLING HYPERMEDIA IMPLEMENTATION 70

cemed with getting links into a statereadyfor implementation. The User Language
layersmay model links asmulti-headed, bi-dir ectional etc. asappropriate.

The Inter mediate layer provides a buffer betweenthe User Languagelayersand
Implementation layers,and shieldseachfrom having to understandthe workings of
the other by providing acommon interchangeformat. Furthermore, once the Imple-
mentation components havebeen shown to perform correctly againstthe full-range
of the applications'IDOspeci cation, they will by de nition work with any User Lan-
guagecomponentsin the system.

SLIPA doesnot de ne exactlythe format of the IDQ for two reasonsFirstly, to do
so would tie the model too closelyto one particular implementation. This principle
has persistedto the de nition of the IDO-equivalent in Meles (x3.6.13). Secondly
there wasa reluctanceto de ne alevel of ‘minimum ability' for a systembasedon
SLIPA®. This secondjusti cation wasbasedon the then current understanding of
link implementation, and doesnot applyto the Meles-eramodel (x3.6.1).

The contentsof the IDOstructure in SLIPA were de ned asSubject, Object, Trig-
ger and Dir ection. Subject and Object refered to the end-points of the link, and
Trigger to the activator of the link. Triggershavebeenpreviouslydiscussedn section
x2.7) and the discussionsof triggers relating to SLIPA do not offer anything new.
However, it should be noted that the realisationthat triggers were an independent
part of link structure camefrom developingthe SLIPA model.

3.5.5 Spans

The work on SLIPA wasfundamentalin the developmentof the modelling of spans
(x2.6).

To de ne the Spanclass SLIPA rst describedthe Point classA “point' is azero-
sizedlocation with media-spaceA point is independentin that it requiresa parent
data-typein order for its location to be evaluated.From this base,the areacaptured
by a spanis that delimited by a number of points, or in OO form, the Spanclass
containsmultiple Point members.

9Rememberthat SLIPA wasintended asa genericmodel of linking implementation, not speci cally
one for Goate.

3. MODELLING HYPERMEDIA IMPLEMENTATION 71

Thereisacritical differencebetweenthis approachand the approachtakento span
implementationin Meles(x3.6.13.2). Aspreviouslydescribed,n SLIPA Point objects
can stand alone asthey contain their own node location information. Under Meles
Point objectsdo not contain node location information and sothere is adependency
on a Spanobject to fully resolvethe location.

The SLIPA de nition initially made sensein terms of a logical object-orientated
structure, and additionally it allowed spansacross severalnode-types.For example,
consider a view which features an image with a caption. The SLIPA Spar Point
de nition allowsthe image and caption to be captured with a single span.However,
the SLIPA de nition of thesetypesintr oduced variousproblems,asdetailedin section
x3.5.8.3, leadingto the changeto the Spandependentde nition (x3.6.13.2).

3.5.5.1 Locators

It isthe role of eachLanguagecomponentto declare and evaluatethe Locator object
within the Spanobjects presentin eachof the Subject , Object and Trigger objects
within the IDQ

In SLIPA a locator is a copy of the link speci cation in a textual format and a
referenceto the Languagecomponentwhich processegt. Locatorssewetwo purposes
in the model. Firstly, they allow the Value member in a Spanto be re-calculatedif
there is any changein the node or nodesthe spanis basedon. Secondly they allow
the Value part to be left unde ned and only when calculatedwhen needed.

Consider the casewhere an embeddedlink declaes a destination, or object, of
“the rst paragraphin node x to include the word "~ sh' .

The precisevaluesfor the object spancannot be calculatedat the time the link is
parsed,sincethe contentsof node x are unknown. One approachwould be to retrieve
X, which is possibleif the Languagemodule concemed would haveaccesso the same
transport methods asother parts of the system.However this would still leavetwo
problems. Firstly, x may changebetweenthe time the link is declared by the module
and the time the link is activated. Secondly if the page containing the speci cation
hasmany links of this type, the systemwould be required to make a large number of

3. MODELLING HYPERMEDIA IMPLEMENTATION 72

often slow requests,although in this caseonly one possibility is needed.

The useof locatorscanhelp here. Instead of calculatingthe exactobject span,the
Language component can declare a locator for the object spanwhich describesthe
link speci cation. At the time the link is activatedthe systemwill call afunction in the
Languagecomponent which will calculatethe exactpositionsand populate the Value
member.

Note that the locator mayor maynot be in the sameformat asthe original speci -
cation. Evenin the caseof textual link speci cationsit is anticipatedthat considerable
ef ciency gainscan be made by storing the speci cation in machine-friendly rather
than human-friendly format. As a simpleexampleconsideralink speci cationin XML
format. The parsing stagefor the speci cation is relatively complex as white space
must be skipped, entities evaluatedand string end-points discoveed etc. Once the
speci cation has been parsedthe systemcan store the samedata in a textual man-
ner more suitablefor rapid parsingthan human readability Taking a simple attribute
“animal="camel" ", once parsedthis could be stored by including the length of each
string before the string, e.g.“ 006animal005camel which eliminatesstring end-point
seaches.Furthermore, entitiescould be stored in their native binary format and white
spaceoutside of quotes simply not stored.

The useof locatorsis optional sincein some unchanging systemssuch asa self-
containedhypemediastored on CD-ROM they are redundant. However, most active

systemswill require locators.

3.5.6 Presentationayer

The taskof the Presentationlayeristo renderinto the environment the effectsof the
the presentationattributes of the Subject , Object and Trigger objectscontainedin
an IDOobject. This requiresa presentationcomponentto be ableto processall node
typeshandled by the application, then alter them accoding to the range of allowed
presentation speci cations. For example,the presentation component may have to
adjustthe background colour of aspanwhich isto be usedasatrigger.

Additionally the presentation layer composescomposite views from individual

3. MODELLING HYPERMEDIA IMPLEMENTATION 73

nodes. For example,for an inclusion type link the presentationlayer must be able
to alter a view to include the object node'®. In an environment where the method
of displayis distinct from the methods of creating and acting upon triggers, the Pre-
sentation layer is the only part of the systemthat needsto be ableto “write into' a
view

3.5.7 Action

The Action layer concems the declaration of and acting upon triggers. An Action
component declamestriggers to the environment when the view is presentedto the
usetr When a trigger is activated the Action component calls functions within the
hypemedia systemto effect the linking action. For example,an Action component
may call a Presentationcomponent to include content in the current view.

In the caseof instant triggers, the Action component would act on the link
without declaringanytriggersto the environment.

3.5.8 Summay
3.5.8.1 Contribution

SLIPA madethe following signi cant contributions to the developmentof animple-
mentation model:

Initial modelling of the Spanand Point classes.
Initial modelling of triggers.
Initial modelling of locatorsand a model for using them.

The introduction of non-traversallinking, i.e. inclusion.

ONaturally, only a part of a object node may be referencedusing the Spanmember of the Object
object. In this caseonly that spanwould be included in the view

3. MODELLING HYPERMEDIA IMPLEMENTATION 74

S)

@ Captio®®

FIGURE 3.7: Hard to interpret span

3.5.8.2 Documentmodelling

The SLIPA model failedto recognisethe importanceof linking asaform of document

creation and treatedlinks asan overlayto documents,rather than the core mechanics
of documents. That is, given that using SLIPA and the “inclusion’ action it is possible
to form acompound structure of variousnodes, it wasunclearhow this differed from

document generation. This wasrecognisedand incorporated into Meles(x3.6.2).

3.5.8.3 Spancomplexity

The de nition of spansin x3.5.5 leadsto severalproblems, which are dif cult to
resolve.Sincea spanis a collection of points and eachpoint hasan independentnode
location, it is possibleto de ne spanswhich existacrossseveralnodes. A description
of SLIPA should considerhow a systembasedon SLIPA would handlethis case.

Where the nodesbeing considered are presentedin the sameview it is possibleto
de ne ruleswhich de ne which areasof the view are captured by the span.Consider
gur e 3.7 which showsa section of a view consisting of an image and a section of
text along with threepoints which delimit a span.Presumablythe entirety of the text
would be captured by the span,but it is not clearwhat sectionof the imagewould be
captured. Figure 3.8 showsarangeof possibleinterpretations.

In the casewhere two or more nodesare not part of the samepane,it becomes
evenmore dif cult to decide which areasof eachnode should be captured by the
span.Sincethere is not obvious spatialpositioning, the interpretation would haveto
be basedon someother property and the relation of that property to the format of
the points.

Thesetwo casedlemonstratedthat the SLIPA method of representingspanswas
fundamentally awed and neededto be reworked.At this point developmentsplit into

3. MODELLING HYPERMEDIA IMPLEMENTATION 75

4 Captioisp Captioi®
L Captioi®® L Captio®®

FIGURE 3.8: Possibleimage spaninterpretations

two directions.Firstly, amodi ed spanformat basedon asinglenode location wasde-
velopedaspart of Meles(x3.6.13.2). The secondbranch of developmentconsidered
aradically different approach where the content of the systemwashighly connected,
allowing spansbetweencontent to be considered regadlessof spatialpositioning in
the view This work developedinto Atomic Hypermedia (x5).

3.5.8.4 Implementationlayers

The Presentationand Action layersare a slight improvement over the Display and
Movement layersin the Nottingham model sincethere is no longer the implication
that one builds upon the other. However the distinction betweenthesetwo layersis
still not clear

In order for instancesof thesetwo layersto work together there must be a ow
of information betweenthem, outside of the model perse This sidechannelof infor-
mation is likely to end up proprietary betweendifferent implementations of the two
layersbreakingthe abstractionof the model. It wasneverclearthat the Implementa-
tion layersin SLIPA would not be better merged into asinglelayet

3.5.8.5 Link direction

SLIPA treatslink direction asif it is an important factor in link implementation, in-
cluding adirection memberin the IDOclasg(x3.5.4).

On further examinationit becameclearthat link direction is not important at the
implementation level, sincethe mechanicsof a link are the sameregadlessof the

3. MODELLING HYPERMEDIA IMPLEMENTATION 76

direction being considered. De nitions suchas forwards', "backwads' and "no direc-
tion' are often useful at the level of high-level speci cation and theseterms may be
usedto provide default settingsfor alink within anIDO (x3.6.13.1, x4.7.1). However
the inclusion of direction asa core memberof anIDO structure wasincorrect.

3.5.8.6 Inter mediateleveltype

The “type' of the Inter mediate layer seemsinconsistentwith the rest of the model.
Instancesof the Languagelayerare clearlyprogrammed,i.e. plug-in or modules, and
the samecan be said for the Presentation, Action and Source layers.However, it is
not clear that the Intermediate layer is programmed and the description in SLIPA
describeghe layerasbeing more a stateof datathan an executable.

This highlights another problem. The model lacks co-ordination’, in that it ishard
to seehow asystembasedon SLIPA would executethe processof link implementation
in a structured way A large amount of the “intelligence' of the systemwas placed
within the implementation layers,and so would be duplicated for a systemwhich
worked in multiple environments.

These two issueswere resolved by the introduction of the Broker (x3.6.9) in
Meles.

3.6 Meles

The Melesmodel developsthe SLIPA model further and addresseshe issuegliscussed
in sectionx3.5.8. A key part of Melesis its increasedscopewhen compared to any of
the previousmodelsdiscussedMelesmodelsthe generationof documentsasalogical
extensionof linking behaviour.

3.6.1 Expandedehaviours

Whilst the initial discussionsof the high/low (x3.3) and Nottingham (x3.4) models
consideed only traversallinks, SLIPA (x3.5) introduced the idea of “include' links
which bring content into the current view This inclusion mayreplaceexisting content

3. MODELLING HYPERMEDIA IMPLEMENTATION 77

in apane.
As part of the developmentof Melesthe core ideasbehind the SLIPA de nitions
were kept although the termswere re ned:

Traversal— The entire paneis replacedwith anew pane.

Inclusion — Content isincluded into the current pane.
Removal— Content is removedfrom the pane.

Replacement— Content in the paneis replacedwith other content.

Theseterms form the common view of link actionsdescribedin sectionx2.5. In
all caseghesedescriptionsare only usedfor describingthe userexperienceof linking
and do not relateto the implementation of the linking behaviours.

For implementation purposesMeles models all of the above behavioursusing a
single action, ‘replacement'. Replacementis capableof modelling all the other be-
haviours providing that either the subjector object of the link may referencea zero
amount of mediaor ‘null'. In terms of implementation the behavioursabove canbe
modelled as:

Traversal— Subjectis the entire pane,object is non-null.
Inclusion — Subjectis null, object is non-null.
Removal— Subjectis non-null, object is null.

Replacement— Subjectand object are non-null.

Thesede nitions showthat traversals simply a specialcaseof (userexperienceye-
placement.A systemdesignermay nd it usefulto recognisetraversal,asthe complete
changeof panemay be signi cant. For example,the meta-datatitle of the panemay
changefor traversalbut not for replacement.Additionally, the changeof pane may
provide opportunities for the systemto simplify the tracking of the paneasdescribed
in sectionx3.6.12.4.

INote that “inclusion' in SLIPA hasbeenseparatednto “inclusion' and ‘replacement'.

3. MODELLING HYPERMEDIA IMPLEMENTATION 78

The de nitions aboveare missingone possiblecombination of subjectand object.
For completenesghere is one further de nition:

Empty — Subjectand object are null.

The “empty' action simply resultsin no changeto the view There are situations
where this action may arise.For example,a removal' link may be speci ed where the
subjectis not de ned at link declarationtime but calculatedwhen the link is activated
by the useof alocator (x3.5.5.1). If the link is activatedand the subjectcannot be
calculated, e.g. a particular label is seached for but not found, the ‘removal' link

becomesan "'empty’ link.

3.6.2 Documents

The linking behavioursdiscussedaboveallow a userto include media within media,
andthis presentsanissueregarding how documentsare modelled in relation to nodes.
Sectionx3.5.8.2 raisedthe questionthat if linking allowsarbitrary content from nodes
to be included in nodes,what is the differencebetweentheseactionsand document
formation?

It becameclearthat there wasno differencebetweenthe two conceptsand this led
to the view of documentsand nodesdiscussedn sectionx2.8.

One aim of the Melesmodel isto model document formation, aswell asarangeof
linking actions.With the relativelysimple addition of modelling the storageof nodes,
the model is ableto capture the complete scopeof document formation.

3.6.3 Designoverviewand terminology

The Meles model abandonsany pretenceof being layered and the term “layer' is not
usedto describeparts of the model. Instead, the term “constituent' is usedto referto
a sectionof the model with an assignedsetof rolesand responsibilities.

Within the model there are two classesf constituent. An instance of a pro-
grammed constituent is calleda ‘'module’. A "programmed constituent' is one which
is realisedwithin the systemby the writing of software code. As is describedin later

3. MODELLING HYPERMEDIA IMPLEMENTATION 79

sections,someconstituent classesre not realisedin suchaway and their placewithin
the model isto capture the conceptof adatastore. An instanceof anon-programmed
constituent is calleda "store'.

The emphasi®n the work “instance'aboveisto showthat all parts of the model are
solelyof type “constituent’ when consideled in the abstract. The differencesbetween
the two typesof constituent becomerelevantwhen considering particular instantia-
tions of the type.

Like its two predecessor®f Nottingham and SLIPA, Meles is designedto aid
the designand implementation of hypemediasystemswvhich are expandablein terms
of linking languagesprocessedAdditionally, Meles is designedto be expandablein
terms of the retrieval of data, the processingof different mediatypesand hasa much
improved model of expendabilityin terms of the implementation environment.

The Meles model consistsof sevenconstituent parts. More than one instance
of each constituent can be active simultaneously with the exception of the Broker
(x3.6.9) which performsthe centralco-ordination role missingfrom SLIPA (x3.5.8.6).

Figure 3.9 showsthe constituents of the model. Note that with the exception of
the Broker constituent, constituents belong to one of three areasof interest: Nodes,
Links and Implementation.

3.6.4 Datatypesand methad names

The Meles model describesrelevantdata-typesin generalterms. ClassesuchasLED
are introduced (x3.6.13) and the internal format is discussedn terms of other classes
which will form part of the classHowever, exactimplementation detailssuchasprim-
itive typesusedare not discussed.

Equally, classmethods are named and described, e.g. canHandle() in section
x3.6.6, to illustrate core conceptsonly andin practicedifferent namesor calling struc-
turesmay be used.

The purposeof Melesis to guide design,not to provide a complete speci cation.
The architect of a particular systemshould formalise a speci cation and publish an
API to the authorsof modules.

3. MODELLING HYPERMEDIA IMPLEMENTATION 80

Nodes Links
Content Source
R N
: Transport Language
T & 1
Broker
.............. P o TUUR, VISR
Media Environment

FIGURE 3.9: The Melesmodel

3.6.5 Content

The Content constituent representsthe storageof nodes. Instancesof Content are
storesnot modules and therefore no code is written, within the scopeof the model,
to implement aContent store. Code will be written to interfacewith a Content store,
further describedin sectionx3.6.6.

The store itself is an arbitrary storagesystemwhich may or may not be part of the
greaterhypemmedia application (x3.1.1) itself. The hypemedia application may only
havelimited access$o the nodes,e.g. it canreadthem but not alter then.

The content in the store is nominally unstructured. The storageof the nodesmay
have structure throughout or in part, but this structure is irrelevantto the model.
However although structure is irrelevantto the model perse it may or may not be
relevantto a particular systemimplemented using the model. An exampleof this is
givenin sectionx3.6.7.

Each node must be uniquely addressedacross all stores. The native format of
addressesnay vary, but it in eachcaseit must be possibleto representthe addressin
a common "node location' or Nodeloc object. The format of the Nodeloc structure

3. MODELLING HYPERMEDIA IMPLEMENTATION 81

is detemmined by the systemdesigner As a simple example,the structure may simply
consistof a string to hold the location on a le systemor URI. The Nodeloc classis
discussedurther in sectionx3.6.13.2.

3.6.6 Transprt

A Transpott module interactswith one or more Content storesand facilitatesreading
or writing of data. Each Transpoit module is responsiblefor handling transfer pro-
tocols with the relevantContent stores. These transfer details are hidden from the
restof the system.The dataretrievedis a node in the widest senseof the word and
includes not only hypemedia nodesin the senseof plain-text, imagesetc. but also
any contained section of data. Sectionx3.6.7 describeshow Transpot modules can
be usedto retrievelink speci cations.

Although there is no technical reasonwhy a single Transpoit module can not
handle multiple addressspacesand protocols, a better approachis for modulesto be
assmallaspossiblewith multiple modules providing the necessar range of abilities,
asthis givesthe administrator of a system ne grained control over which Transpott
modulesto make available.There is no advantagein having fewer, larger Transpott
modulesrather than many smallmodules.

EachTranspot module suppliestwo keyfunctions. The rst function, canHandle() ,
returnsif the module is capableof handling a particular Nodeloc object, with module
replying in the negativeif the protocol is unrecognisedor the requestedmediaspace
is unreachableby the module.

The secondfunction, get() attemptsto retrieve a node speci ed by a Nodeloc
object. This function mayreturn “inappropriate” asbefore, but mayalsoreturn errors
relating to avalid attempt to retrievethe node. For example,a Transpoit module may
support HTTP transfers(x4.5.1) and when passeda Nodeloc object containing a
HTTP URL would return positively to canHandle() , but on attempting to retrieve
the node it may nd the seweris unavailable.

Having both canHandle() and get() functions allow an addressto be assessed
for validity, if not availability without having to actually retrieve the node. In some

3. MODELLING HYPERMEDIA IMPLEMENTATION 82

casest may not be possibleto checkif a node is available without having to make
either afull or partial request.For example,it is possibleto checkfor the existenceof
a node accessedia HTTP by using the 'HEADcommand which retrievesmeta-data
relating to the node without retrieving the full contents. However, evenwith HEAR
network connection must be establishedwhich will be a signi cantly slower process
than merely ensuringthat the addressin the Nodeloc seemssensiblefor this module.

Transpoit modules are owned by the Broker (x3.6.9) but are availableto other
parts of the system.For example,a Languagemodule (x3.6.8) may usethe available
Transpoit modulesto retrievelink speci cationsfrom a Source (x3.6.7) store which
is accessedavith standad protocols. In other casesa Languagemodule may need to
examinea collection of nodesto discoverlink relationships,e.g. the link discovery
mechanismsn [4][9][56].

Transpoit modules would, typically, not be accessibledirectly but via a handler
function suppliedby the Broker. The handlerwould query eachof the availableTrans-
port modulesand passthe requestto a suitablemodule, and return the resultsto the
caller The callerwould not know which Transpot module sewiced the request.By
basingthe evaluationstrictly on ability to sewicethe request,the designavoidscases
where a caller function, in any part of the system,insistson a particular Transpott
module being available.This is considered desirableasit keepsa systemloosely cou-
pled and if for reasonssuch ascost, licensing or security an administrator wishesto
replacea Transpoit module which sewicesone classof Nodeloc with a functionally
equivalentone, it is possibleto do this without breakingthe dependenciesof other
parts of the system.

Figure 3.10 showsan examplesystemimplementation of node relatedconstituents.
In this systemnodesare retrievedfrom three Content stores,the WWW, an Intranet
and a collection of les on a network attachedsewer. Thesenodes are retrieved by
two Transpott modules, namedafter the protocols they support.

3. MODELLING HYPERMEDIA IMPLEMENTATION 83

: Content
www Intranet Workgroup
Lo port ...
HTTP NFS

FIGURE 3.10: Exampleinstantiated node constituents

3.6.7 Source

An instanceof a Source component is a store which holds link speci cations. This is
analogousto the way a Content store (x3.6.5) holds nodes.

A Sourceis any information that canbe interpreted asa link speci cation, soit is
a matter of perspectivewhether to consider some data, of arbitrary granularity, asa
Source. The examplesof Sourcesin SLIPA (x3.5.2) are still valid here.

One extraexamplewhich ts into Melesmore cleanlythan it doesin a discussion
of SLIPA is that of using the structure of nodesthemselvesasa link source. Such
an approachis usedin WHURLE [71][73] where the positions of pageswithin the
hierarchy de ne the “structural links' within the system.Whilst a SLIPA Source could
capture this conceptby making a Source component that had access$o the pagestore,
under Melesthe pagestore itself is captured within the model.

It is important to note that Source, like Content, is a concept rather than an
instancewhich canbe clearlyidenti ed. This conceptcapturesanything which deter-
mines the declarationsmade by a Language module (x3.6.8). In an extreme casea
Languagemodule could be createdwhich declaesrandom links. Even here thereis a
Source for the links: the system'srandom number generator

Note that the de nition of Source in Meles is signi cantly different to that in
SLIPA x3.5.2. In SLIPA an instanceof a Source layer was a programmed compo-
nent which interfacedwith a particular source of link speci cations and supplied an
API for Languagecomponentsto retrieve speci cations. The APl supplied was not
standadised, but would be published by the authors of Languagemodules.

The SLIPA method raisesa couple of issues.Firstly, if there were two Sources

3. MODELLING HYPERMEDIA IMPLEMENTATION 84

that both retrieved speci cationsusing a common protocol, eachSource component
would haveto implement the protocol, leading to code redundancy In Meles this
problem hasbeensolvedby the useof globally availableTranspot modules(x3.6.6),
a solution which could haveequallybeenappliedto SLIPA.

Secondly the useof non-standad APIs for the Source components makesit dif-
cult for a Language module to call on a number of Sources.Under Meles a link
speci cation, or group of speci cations, can be retrieved by passingthe appropriate
Nodeloc to the Transpoit modules. Even if SLIPA wasmodi ed to standadise the
communications between Source and Language components, there would still be a
requirementfor aLanguagecomponentto know which particular Sourcesto consult.

Meles takesthat view that in casesvhere two distinct parts of the model form a
strongly connected pair basedon proprietary information, the abstractionis awed
and there is an argument to merge those areas?. In this instancethe parts of the
Sourcelayerfrom SLIPA which relateto deciding which resouicesto query are moved
into the Languageconstituent, leavingthe Source an abstractstore.

The trade-off of this approachis that with Melesthe scopeof the Languagecon-
stituent hasincreasedo include “knowledge' about how to interfacewith proprietary
Sources.However, the use of Transpoitt modules often reducesthis requirement to
knowing the node locations of the speci cations.

3.6.8 Language

Given a ‘context', a Language module declaes links to the system.A context
(x3.6.12.2) consistsof a node and meta-datasuch asthe Nodeloc for the node. A
Languagemodule suppliesa function nameddeclare() which performs this opera-
tion.

This de nition is accuratefrom the point of view of how Languagesmodules t
into the implementation of linking, although it doesobscure the fundamentalpurpose
of Languagemodulesin the model which is to allow the interpretation of arbitrary
linking speci cations.

12 similar caseexistsfor the SLIPA Presentationand Action (x3.5.8.4) components which are
strongly interconnected.

3. MODELLING HYPERMEDIA IMPLEMENTATION 85

Source
Linkbase Content
;. Langu .a.g.e.
XLink HTML-link

FIGURE 3.11: Examplelink constituents

Theselink speci cations are retrieved from one or more Sources(x3.6.7) then
interpreted. Links relevant for the current context are declaed in LED (x3.6.13)
format. It is within Languagemodulesthat proprietary, high-level link speci cations
are interpreted into acommon format.

As previously mentioned, although the constituent view of the model showsthe
Languageconstituent communicating directly with the Source constituent, in practice
Transpot modulescanoften be used.

Note that the link speci cationsare not necessay retrievedat the time declare()
is called. In some casessuch as GHURLE (x4.7.4) which are basedaround xed
linkbases,speci cations can be retrieved and interpreted during initialisation of the
Languagemodule and then stored within the module. In other casesuch aswhere
link speci cationsare embeddedin the node, the retrievalhasto bedonein declare() ,
although in the caseof embeddedlinks the “retrieval' is a seach of the node rather
than arequestfor aremote resource.

3.6.8.1 Example

An examplearrangementof implemented Source and Languageconstituentsis shown
in gur e3.11. Note that although this gur eisidenticalto gur e 3.6 from the SLIPA
discussionthe approachesof the two modelsdiffer asdiscussedn sectionx3.6.7.

3.6.9 Broker

The Broker is the hub of the link implementation processasdescribedby Meles, and
performs a co-ordination role.

3. MODELLING HYPERMEDIA IMPLEMENTATION 86

The Broker is the logical owner of all of the other modules in the system,and
where necessay provides an interface for modules to accesghe methods of other
modules, e.g. the availability of Transpoit modulesthroughout the system.In short,
the Broker seesall modules and all modules seethe Broker, howeverno module can
seeany other module directly*s.

The Broker containsthe realiser() method describedin sectionx3.6.12 which
usesthe abilities of the modulesin the systemto implement linking. Note that the
Broker itself doesnot havethe ability to processany particular mediatype, link speci-
cation or communicationsprotocol or to interfacewith aclient.

3.6.10 Media

Media modules perform operations on node data-types.There are four operations
provided by mediamodules:join() , select() , merge() andconvert() . A particular
mediamodule will support one or more of theseoperationsfor a setof mediatypes.

join() andselect() arerelatedto theimplementation of linking, whilst convert()
and merge() provide a sewice to the system,patrticularly to Environment modules
(x3.6.11.

3.6.10.1 Implementinglinking

Sectionx3.6.1 describedhow link realisationcan be modelled using the single oper-
ation of ‘replacement’.The rst role of Media modulesis to perform this operation
from combinations of arbitrary mediatypes.

The instinctive way to achievethis isto havea Media module, or setof modules,
which handle different combinations. For example,a module to replacetext with
an image, a module to replacea section of an image with text, etc. However, asan
increasingvariety of mediais processedoy the system,the number of permutations
increasegreatly In fact, eachmodule would needknowledge of n mediatypeswhere
n is the total number of mediatypesthat canbe representedby the system.If anew

130f course,sincethe structure within a module is unde ned in Meles, amodule may itself include
other modulesof atype not de ned by Meles. For example,the useof modulesby Webenv(x4.8.1) to
support multiple browsers.

3. MODELLING HYPERMEDIA IMPLEMENTATION 87

mediatype is addedto the systemeachMedia module would needto be updated, or
anew Media module addedfor eachpossiblenew combination. In short, the number
of permutations is n? and the effect of adding a new mediatype adds(n + 1)> n?
permutations.

Secondly it must be considered how the Nodeclasscanrepresentall of thesepos-
sibilities. A data-type which is fundamentally altered eachtime a new media type is
added to the systemis not practical since the modules which work with the type
would alsoneedto be updated.

The solution to theseissuedsto rstly removethe requirementfor the Nodetype
to directlycapture eachmedia-type.Insteadthe detailed capture is performed by one
of a number of specialiseddata-types,all of which shae a common root. In object-
orientated terminology it would be saidthat the specialisedypesall inherit from a
common root, the Nodeclass,which may itself evenbe abstract.In implementation
terms, different approachesmay achievethe sameeffect. For example,in Goate the
node data-type(x4.3.4.2) usesa union to hold multiple possibilitiesof sub-class.

Each specialisechode-type models a single media-type. As part of this modelling
the type must allow the inclusion of other nodes. That is, the specialisedtype does
not haveto be able to store the contents of other media typesaspart of its native
structure, asthis would leadto the problemsdescribedabove,but it must be ableto
contain Nodeobjectsat arbitrary points.

The next stagein improving abstractionis to examinethe processof replacement
itself. The stagesof replacementcan be broken down into:

1. The object spanis processedto produce a node data-type holding only the
selectedregion.

2. The subject spanis processedand the end-points within the subject node are
identi ed.

3. The subjectspanis removedfrom its containing node.

4. The object spanis inserted into the subject's containing node at the position
the spanusedto occupy

3. MODELLING HYPERMEDIA IMPLEMENTATION 88

Rememberthe aim of the procesgsto model replacementn suchawaythat it can
be caried out by one or more Media modules, where eachmodule only needsto be
ableto understanda single specialiseddata-type. Consider the exampleabovewhere
asectionof text isreplacedby aregion of animage, i.e. the text sectionis the subject
and the imageregion is the object.

The rst stageof the processneedsto generatea Nodedata-typewhich contains
the region of the image. This operation is caried out by the select() method of a
Media module which specialisesn the processingof image nodes. The resultanttype
would be of the Node family' but would contain specialistdata capturing the image.

The remainingstagef the processvould be caried out by the join() method of
a Media module specialisingn text processing sincethe module needsto understand
the specialisttext-node data-type. However, note that the module doesnot needto
understand anything about the included type since objects with inherit from type
Node

The Broker will supply a handler function which determines which Media mod-
ulescanperform arequestedoperation, similar to the handlerfor Transpot modules
(x3.6.6). The handlerwould receivethe requestandreturn the resultwithout the call-
ing function knowing which particular module satis edthe request.Aswith Transpott
modules, Media modulesmust supplyacanHandle() function which returnswhether
they canhandle a particular. Again, note that the canHandle() function is a concept,
not a speci cation, and there are other waysof achievingthe sameeffect which are
equally valid. For example,in a particular systemthe Media modules may declae
their full range of abilities which are then stored by the handler, removing the need
for repeatedcanHandle() calls.

The node produced by a join() operator may be considered a virtual node'.
This term re ects the fact the node produced doesnot model an actual node which
existsin a Content store. Therefore, a virtual node cannot be retrieved purely with
an addressbut only asa combination of addressand link speci cation(s). A virtual
node is considered to be volatile, i.e. not stored, although in practice a systemmay
cachefrequently requestedvirtual nodesto avoid repeatedcomputationally expensive
generation of the node structure. Note that virtual nodesusethe samedata-typeas

3. MODELLING HYPERMEDIA IMPLEMENTATION 89

non-virtual nodesand therefore the content of apanecanbe representedwith asingle
Nodeobject.

The structure of the replacemenfprocesdetailedaboveis provided by the realiser()
(x3.6.12) method.

3.6.10.2 Merge

The merge() operation attens nestednode structuresof the sametype. For example,
if a nodeText object contains another nodeText object, merge() would removethe
nesting and incorporate the contents of the inner object directly into the structure of
the outer object.

An exampleof merge() in useis provided in the following section.

3.6.10.3 Conversion

Another role of Media modulesis the conversionof mediatypesfrom one format to
another. This operation differsfrom select() andjoin() asit requiresthe knowl-
edge of two media types. It is expectedthat within a systemthere may be Media
modules which do not support convert() at all, and others which only support
convert() .

The ability to convert betweenmediatypesis suppliedasasewiceto Environment
modules which interfacewith a client. The result of variouslinking operations may
createa Nodeobject which cannot be presentedby the client. An exampleof a hard-
to-presentstructure would include avideo clip containedwithin animage.In this case
aconvert() operation maybe usedto turn the video into animage. The two images
could then be converted into one using an appropriate merge() operation, resulting
in apresentablestructure.

The convert() method isconsideredto belossy The exampleaboveof converting
avideo clip to animagewould clearlylose someinformation in the video. Secondly
convert() operationsare not necessarilyeversiblee.g. If text is converted to anim-
age,andthen converted backagainthe nal resultmaynot equalthe original. Section
x3.6.11.3 discussesiow the convert() method isusedby Environment modules.

3. MODELLING HYPERMEDIA IMPLEMENTATION 90

3.6.11 Environment

The Environment constituent relatesto the interfacing betweenthe hypemedia sys-
tem and the reader'sclient. A client in this caseis a software application which is
capableof viewing hypemediacontent. The work presentedthroughout this chapter
on hypemediaimplementation hasworked on the basisthat the platform for hyper
mediaimplementation doesnot needto understandcomplex hypemediabehaviours.
This implementation platform is the client, and associategrotocols, with which the
useraccessethe system.

The High/low model (x3.3) describedhow high-level behaviourscan be con-
verted into low-level behaviours.In this model the high-level behaviourswere limited
to asetof traversalbasedbehaviours,and the low-level abilitiesrequired of the imple-
mentation platform included the ability to perform traversal.

3.6.11.1 Newlow-levekequirements

Meles includes document formation and considersa greaterrange of high-level be-
haviours (x3.6.1). However, the low-level requirement is lessdemanding than pre-
viously since the implementation of linking effectsis captured within the processes
describedby the model. Therefore, the implementation environment needsonly to
be ableto displaygeneratedcontent from the systemand declae/r espondto declar
ative events.

As an example,the client is passedthe text “How now brown cow?” which is
displayed.Furthermore a trigger is placedover the word “brown'. This trigger is ac-
tivated by the userand the client sendsthis eventto the systemvia the connecting
Environment module. The system,againviathe Environment module, respondswith
the text “How now blue cow?”.

The semanticsof this link were: “For evely instanceof the word "brown', declae
atrigger over the word and replacewith the word "blue' on activation.” The system,
however, wasnot aware of the high-level semanticsand equally the semanticscould
havebeen “For eachcolour mentioned declar a link over the word which replaces

the word with arandom colour.”

3. MODELLING HYPERMEDIA IMPLEMENTATION 91

3.6.11.2 Client interfacing

Like other modules, an Environment module is dynamicallyloaded into the hyper
media systemand interfaceswith the Broker using a declaed API. The module then
interfaceswith clients of a particular type. In most caseghe client itself should not
be implemented asan Environment module, asthis would require the client to be
activatedwhen the systemis initialised, and to stayactiveaslong asthe systemdoes.
Secondly the client would only be availableon the samemachineasthe hypemedia
system.

A better solution allowing distributed working is for the client and Environment
module to communicate over a de ned network protocol. From the point of view
of the model this connection is proprietary to the Environment module, although in
practiceit may makeuseof standad protocols. For example,Goate (x4.4) makesuse
of HTTP asacommunicationsprotocol in order to utilise existing client applications
in the form of WWW browsers.

An Environment module is responsiblefor receivingrequestsfrom a client for a
particular addressand passingthe requestto the Broker. The requestwill be processed
by the realiser() method and the resulting node structure returned to the Environ-
ment module along with the list of triggers to declae. This communication is not
formalisedin this thesis,but seesectionx3.2.4 for relatedwork.

3.6.11.3 Final nodeformat

It isthe responsibilityof the Environment module to transform the returned datainto
a format suitable for the client it is interfacing with. An Environment module must
be capableof processingat leastone specialisedhode data-typeobjectin order for the
module to translatethat type to a form understood by the client. In the casewhere
an Environment module encountersa node type which it cannot processor which
is not suitable for the client it is interfacing with, the module may make use of the
convert() method availablein Media modules.

As with other casesof a module making use of the facilities of other modules
(x3.6.6, x3.6.10.1) the Environment module would use a handler in the Broker to

3. MODELLING HYPERMEDIA IMPLEMENTATION 92

accesghe appropriate Media module. In this casethe requestmay make use of mul-
tiple modules. For example,an Environment module may only be ableto handle text
and imagesbut encountersan animation type node. The requestto the Broker would
list text and image asthe only acceptableypesand the handlerwould attempt to sat-
isfy this request.In this examplethere maybe no Media module capableof convetting
an animation to animage, but there is atransformation from animation datato video
dataand atransformation from video datato imagedata. In this situation the handler
would makeuseof multiple conversionsto reachthe desired format.

In a particular systemimplementation the Broker may decide which collection
of convert() methodsto use,basednot on the shortest "path' but on a combined
weighting for the conversion.As mentioned in sectionx3.6.10.3 a conversionmay be
“lossy', meaning the result doesn't preserve the semanticsof the original. It may be
possibleto assignto assignaweighting valuefor eachconversionbasedon how "dam-
aging' to the semanticghe conversionis. The path with the lowestdamageweighting
would be the one chosen.For example,in somecasest may be desirableto convert
the formatasa! b! cratherthana! cdirectly.

3.6.11.4 Trigger integration

The resultof arequestto the Broker will be anode containing the content to display
and a collection of triggers which apply to this node. The client must integrate these
triggers with the view it displays.The role of the Environment module in this process
isto convett the triggersinto aform the client canunderstand.

The strategiesfor dealing with theseissuesvariesdepending on the client and
requirements. For example,if an Environment module encountersa trigger event
type which it doesnot recognise,how should the trigger be handled?Presumingthe
trigger type makesuseof the Spanmember(x2.7.4.1) it should be possibleto convert
the trigger to aknown type suchasclick . But this may not be a sensiblething to do
in all casesUltimately this is a decisionfor the author of the Environment module.

The situation may arisewhere the trigger type is known to the module, but the
module knows that the type does not exist for this client. This caseis simpler to

3. MODELLING HYPERMEDIA IMPLEMENTATION 93

handle sincethe module author canmakeinformed judgementsabout how to handle
the trigger type.

In the caseof the Webenv(x4.8.1) environment for Goate, the client hasalimited
rangeof eventswhich canbe declaed. Fundamentallythe browsermust be persuaded
to senda HTTP requestto the Environment module when the eventis activated.
click eventstakethe form of <a href> tags,hover eventscanbe implemented with
JavaScriptascantimeout events.Equally, atimeout on apagecould be implemented
using the <meta refresh> tag in the <head>sectionof the page.

Webenvalsohandlesthe case®f overlappingtriggers and ensuresthat the HTML
which is sent to the client will be understood. In the caseof Webenv this involves
detecting exactlywhich client is connectedand customisingthe output accodingly.

As canbe seenfrom this example,evenwith afairly simplede nition of low-level
linking thereisstill greatscopefor moving the “intelligence’ of aclient approacheither
towards the client or towards the Environment module.

3.6.11.5 Openhypemedia

Open Hypermedia (x2.9) behavioursof interfacing with arbitrary applications can
be achievedby using an Environment module. As an example, consider a method
by which hypemedia content could be interfacedwith a word processoror similar
“of ce' application.

This may be achievedby writing a plug-in for the word processorusing whatever
programming features are availablein the application. This plug-in would interface
with a Environment module on the systemvia an proprietary or standad protocol
(x3.2.4).

Note that unlike other approachessuch as Microcosm [35] which retrieve link
de nitions and applytheselinks to the contentsof the application, this method would
include nodesin the application and thesenodesmay feature links. SinceMeles uses
links to createdocuments, it doesn't make senseto supply the link de nitions alone
to a3rd party application, sincethis application may not haveaccesgo the nodes. If
access$o the nodeswasalsosuppliedviathe Environment module then the application

3. MODELLING HYPERMEDIA IMPLEMENTATION 94
would end up re-implementing the Broker.

3.6.12 Realiser
3.6.12.1 Overiew

Note that Meles is a model, not a speci cation, and ne details regaiding process
ow and executionof animplemented systemare not stated. However, the general
conceptsof how a systemwill handle requestsand form documentscan be discussed,
astheserelateto the structure of the model. This section describesthe realiser()
method within the Broker which providesstructure to the processof document for-
mation.

Note that in various areasof this generalisedprogram ow it is possiblefor an
systemimplementor to make optimisations to this processwhilst still adhering to
the overriding principlesof the model. Optimisations are discussedurther in section
x4.9.2.

As previouslydiscussedjnteraction with the user'sclient is done via an Environ-
ment module. The Environment module will receivefrom the client detailsof either
a new document to retrieve, or of which trigger in the view wasactivated. The ex-
act form of this communication is proprietary to the Environment module and client
concemed. Someconsiderationsare discussedn sectionx3.6.12.3.

The Environment module sendsthe requestto the realiser() method in the
Broker to be sewiced, and receivesn return a Nodeobject and a list of triggersto be
declaed. The triggers are suppliedin a format which groups a Trigger object with
a unique identi er . The Environment module will reconcile thesetriggers with the
Nodeobject asappropriate for the client.

The requestsentto Realiser() by the Environment module consistsof a Span
object and aRCPRbject. The RCRlasscapturesthe conceptof RealisationControl Pa-
rameters(RCPs) and de nes a setof datawhich affectshow the realiser() method
behavesExamplesof how the RCRlasss usedare discussedn the following section.

14 As opposedto aspeci cation which would capture thesefactors.

3. MODELLING HYPERMEDIA IMPLEMENTATION 95

From the point of view of the Environment modulesthe realiser() method isa

“blackbox’, the workings of which do not needto be understood.

3.6.12.2 Processingtages

In this section the stagesof processingperformed by the realiser() = method are

steppedthrough. In order to simplify the description, error handling presentat each

stageis omitted. Error handling in the method is discussedn sectionx3.6.12.6.

The stagesof processingare asfollows:

=

. Therealiser() method receiveghe Spanand RCRobjects.

. The node referencedby the node location within the spanis retrieved. As pre-
viously mentioned (x3.6.6) the Broker providesa handler method which allows
aquery to be sentto the collection of Transpoit modules. This handleris used
by the realiserto retrievethe node.

. The Spanobject may specifythat the entire node is not required, and only a
subsetof the node should be returned. To trim the raw node datadown to size,
the realiserusesthe media handler (x3.6.10.1) in the Broker. The handler will
callthe select() method of the appropriate Media module.

. The combination of the potentially trimmed node and the RCPsforms a con-
text'. This contextis passedo eachof the Languagemodulesin the system.The
statementis essentially:“Given this context, what links should be declared?”.
Each Languagemodule will return zero or more links in the common format
describedin sectionx3.6.13.

Someof the links returned may needto be activated. This may be becausethe
trigger wassetto instant or becausehe trigger had beenactivatedin the client.
The client will havepassedn, aspart of the RCRobject, alist of triggers which
havebeenactivated.

For eachactivatedlink, the object part of the link is retrieved. This is done by
the realisercalling itself recursively The spanpassedo the realiseris the object

3. MODELLING HYPERMEDIA IMPLEMENTATION 96

span.Regading the RCP part, somedatawill be verbatim copiesof that passed
in (suchasthe list of triggersto activate)and somewill be modi ed (suchasthe
depth control parameterdescribedin sectionx3.6.12.5).

7. The object content returned is reconciledwith the existing subject content by
using the Media module handler to perform ajoin() (x3.6.10.1) operation.
The list of triggers returned by the recursivecall to the realiserare addedto the
list of triggers declaed by the current call.

8. Finally, the realiserreturnsthe Nodeobject and the list of triggers to the calling
method. Sincethis is a recursivemethod, the calling method may be another
instanceof the realiseror the Environment module.

3.6.12.3 Environmentto client inter facing

As previously discussedx3.6.11) it is the role of Environment modulesto provide
an interfacefrom clientsto the system.Rememberthat the realiserwill return to the
Environment module a list of triggers to be declaed, eachone carying a unique
identi er. If atrigger is activatedby the client, the unique ID will be included in the
RCPobject passedackto the realiser

The Environment module must cary out any necessar translation to convert
the Trigger object into a form recognisedby the attachedclient. This includesthe
encodingof the trigger ID within the trigger declared within the client. For example,a
particular client maynumber its declared events.In this casethe Environment module
must translatefrom the trigger ID to anumber. When the trigger is activatedand the
event number is sentto the Environment module, the module must translate back
into the trigger ID for sendingto the realiser

Each Environment module must maintain the necessar “state' information for
eachattachedclient to allow this translationto take place.

3. MODELLING HYPERMEDIA IMPLEMENTATION 97

3.6.12.4 Documentformation with link paths

A client will make an initial requestto the systembasedon a setlocation suchasa
home page,typed location or bookmark. As the userinteractswith the hypemedia,
the node suppliedto the client will be dependenton the path of links travelled.

For example, an initial node N is supplied to the client. Along with this node
a number of triggers are supplied including the trigger for link a, which the user
activates.The Environment module will senda requestto the broker for the result
of affecting N with a and return an altered node a new set of triggers. The new set
of triggers may or may not include someor all of the triggers from the original set,
dependingon the linking action caried out by a.

Of the new set, the user activateslink b. The requestsentto the broker is now
for the result of N being affected by a and then b. As the usercontinuesto usethe
hypemediathe link path' will increase.

However in the casewhere there is no requirementto basethe realisationon the
previousnode, i.e. traversal,the link path canbe zero-ed and then only the new base
node needbe returned.

3.6.12.5 Depth

The conceptof "depth’ refersto the distancein linking actionsbetweentwo items of
media. Consider three nodesconnectedby linking. a is connectedto bviall andbis
connectedto cvial2. The high-levellinking actions,e.qg. ‘traversal',chosenfor 11 and
I2 are not important. If a is taken asthe point of referencethen bis at a depth of 1
and c at adepth of 2. If bwasthe referencepoint then c would be at adepth of 1.

In some casest may be desirableto limit the availability of links over a certain
depth. An exampleuse of this behaviouris where a hypemedia haslinks de ned so
that wheneverkeywordsare displayedadescription of eachkeyword isincluded. These
de nitions may themselvedeature keywords which require description. With suchan
approachit is possibleto suffer information overload asthe nestedde nitions “take
over' the display In this exampleit would be usefulto restrict the nestedde nitions
to adepth, for example,of 2 levels.

3. MODELLING HYPERMEDIA IMPLEMENTATION 98

Restrictionson links accoing to depth canbe achievedby the useof the depth
control parameterin the RCRlass.If the limit wassetto 1 and a waspresented,then
bwould be availableviall. However, from bit would not be possibleto accesg asl2
would not be considered.

Link triggers are considered to existat the depth of their object, not their subject.
In the caseof |2 the trigger existsat depth of 2 rather than 1. This approach makes
sensesincethe altemative would involve the trigger for 12 being presentedevenwhen
the object c wasnot accessible.

Note that in order for depth limitation to work, the depth restriction parameter
must be decremented after eachlinking action. In the casewhere the linking action
isinstant and the link is processednstantly within the realiser this canbe ensured.
However, for other trigger typessuchasclick where there is a "break’, whilst the
useractivatesthe link it isdown to the Environment module to ensute that a suitably
decrementeddepth restriction is passedo the realiserfor the next iteration.

In somecasest may be desirableto distinguish betweenthesetwo casesso that
one rule on depth limitation appliesfor instant links, e.g. automatically included
content, and another appliesfor content that the userhasconsciouslyelectedto view

Depth control can be requestedfrom either of two sources.Firstly, the control
parameterin the RCPobject may be set by the calling method. This caseincludes
limitations requestedby the Environment module due to either user preference or
presewation of earlier restrictions aswell asan RCRobject passedn by another iter-
ation of the realiser Secondly the system'sLED(x3.6.13) classmay de ne a depth
memberwhich allowsLanguagesto de ne links with restrictions.

In the casewhere both the LEDand RCRobjects havea depth limitation set, the
lower valueis used.

3.6.12.6 Errorhandling

At any of the stagesof the realiseran error may be thrown. There are severalgeneral
categoriesof error:

System— Non-handleable systemerror, e.g. memory exhausted

3. MODELLING HYPERMEDIA IMPLEMENTATION 99

Media cannot be processed— Media modules do not existto cary out the
required join() or select() operation

Resource not available— The spanrequestedcannot be retrieved

A systemdesignershould considerthe behaviour when eachclassof error is en-
countered. For exampleif a systemcannotjoin() two particular items of media, the
systemcould either return the Nodeobject minus the join along with a waming code
or return an error code without any Nodeobject.

3.6.13 Link E ect Descriptos

In SLIPA the IDOclassdescribeda single one-to-one link. Meles continueswith this
conceptwith the lessvaguelabelof Link Effect Descriptor or LED. Like the IDOclass,
the LEDclasshasthree core members:Subject, Object and Trigger.

3.6.13.1 Dir ection

Unlike the IDOclassin SLIPA, the LEDclassdoesnot contain a member describing
the direction of the link. This changere ects the realisationthat from an implemen-
tation point of view the direction of alink is not relevant. That is, the mechanicsof
‘replacement’,the fundamentallinking action modelled, do not changeregarlessof
whether alink is conceptuallyforwards, backwads or directionless.

There may be differencesin presentationbetweenthe different direction labels.
For example,the trigger for aforwardslink is blue whilst the trigger for a backwads
link isgrey Thesedifferencescanbe fully captured by the Presentation object within
the relevantSpanobjects asdeclared by the relevantLanguage module. Simply, the
direction of alink is a high-level considerationand not animplementation one.

However, the designerof a particular systemmay chooseto include a direction
memberwithin the LEDclassThis could be usedto provide adefault setof behaviours
for a LEDobject. For example,in Goate Languagemodules candeclae LED(x4.7.1)
objectswithout havingto fully de ne the presentationof the triggers. By setting the
direction attribute of the LEDobject to one of a setof symbols,the systemcan apply

3. MODELLING HYPERMEDIA IMPLEMENTATION 100

a default, system-widepresentationstyle for that type. This allows triggers declared
from avariety of languageso havea constanton-screenappearance.

This useof anextramemberwithin the LEDelds isentirely valid within the model,
and a systemdesignermay add arbitrary extra elds asnecessayto aid systemdesign.

3.6.13.2 Spans

Aswith SLIPA, Melesusesa Spanclassto describean areawithin a sectionof media.
However, the structure of the clasdiffersin order to avoid the problemsdiscussedn
sectionx3.5.8.3.

The SLIPA de nition initially madesensede ne a point' within the hypemedia
and a ‘span'is simply the area delimited by many points. The problems with this
de nition stemfrom ignoring the fact that aregion is sensiblyconstrainedwithin an
area,e.g.anode.

The revisedde nition of the SpanclasshasasingleNodeloc object which describes
the basenode for the span,i.e. the node in which the spanrefersto an area. This
Nodeloc object may refer either to a node in the hypemedia storagesystemor to a
volatile in-memory Nodeobject. The rst of thesecasess usedwhen referring to a
spanaspart of alink de nition, e.g.*. ..replacewith paragraphx in node y”. The
secondcaseis usedwhen referring to a Nodeobject which is currently being worked
on aspart of the realisationprocess.

Along with the Nodeloc object the Spanclassincludesa Subnodeclasswhich de-
scribesaregion within anode. This Subnodeclasscontainsanumber of Point objects.
The Point classis overloadedso that it canreferto many different mediatypes. For
example,for a text node eachPoint object would hold a byte-offset whilst for an
imageeachPoint object would hold a co-ordinate pair. The systemmust ensue that
eachPoint object in a Subnodeobiject is of the sametype and of an appropriate type
for the node refemred to.

The exactnumber of Point objectspresentfor a spanof a particular type will vary
by systemdesign. For example, it is possibleto delimit the corners of a rectangular
sectionof animageusing two points. However, amore exible approachisto allow a

3. MODELLING HYPERMEDIA IMPLEMENTATION 101

greaternumber of points and capture the areadelimited by them.

One of the original justi cations for the SLIPA approach to spanswasthat in
somecasest would be necessay to referencepoints in different nodes.For example,
considerapicture with acaption. If this wasto be selectedwith asingle spanthe start
of the spanwould be the top-left corner of the picture and the end of the spanwould
be the end of the caption. From this perspectiveit made senseto attempt to de ne
a set of rules which govemed how spansbehavedin this situation. However, after
abandoningthe SLIPA approachfor the reasongreviouslydiscussedit wasnecessar
to nd analtemative solution. During the modelling of LED inheritance (x3.6.13.4)
it becameclearthat inheritance provided a cleansolution to this issue.

3.6.13.3 Native spans

A spanis "native' whenthe Subnodeobject refersto anareawithin the node pointed to
by the Nodeloc object. This is the normal wayto considerspans,and it is anticipated
that most spanswithin ahypemediawill be native.

Conversely a "non-native' spanis one where the Subnodeobject refersto an area
not presentin the node refered to by the Nodeloc object. Rather, the areadescribed
by the Subnodeobject is only valid after one or more other links havebeenactivated.

In aMeles-basedsystemlinks canbe assignedo areasof animagesothat wherever
that imageis presented,usuallyby inclusion, the links will be presentviathe property
of inheritance (x3.6.13.4). In somecaseghis may not be a desirablebehaviour since
the links annotating the image may only be usefulin a particular context. Instead, it
would be usefulto declae links that apply to the image but are de ned to existon
the pageproviding the context!®. This is the fundamental idea behind a non-native
span;the Nodeloc object points to the pageproviding context yet the Subnodeobject
refersto content linked into the page.

For this method to work there needsto be awayin which a LEDobject canrefer

15This particular examplecanbe implementedusingHTML andimage-mapsThe link-setis declared
on the context pageusingthe maptag yetthe links are appliedto content linked into the page.However,
HTML is not capableof the default Meles behaviour of having links apply to imagesregadlessof
context.

3. MODELLING HYPERMEDIA IMPLEMENTATION 102

enceafuture linked object. This is achievedby the useof a NonnativelD classwhich

containsa referenceto a future-linked node. A systemdesignershould considerthe

mechanismby which aLanguagemodule obtainsand maintainsareferenceto the LED
which links in the future content. A better approach may be to basethe mechanism
on the Locator for the referencedspansothat the non-native spanis appliedwhere a
particular Locator is matched.

In either case,this leavesthe issueof how a Languagemodule initially becomes
awaee that a link is availableto be usedasa basisfor a non-native span.There are a
number of possibilities.One isthat the userselectedthe referencednode in someway
andusedthis asabasisfor alink, i.e. amethod of specifyinglinks in the environment is
present(x3.6.14.2). Secondly the argument canbe madethat using non-native spans
to " ne tune' the behaviour of a link is a high-level behaviour and therefore both
the non-native and context-providing LEDobjects should be declared by the same
Languagemodule.

3.6.13.4 Inheritance

LEDs referencing a node apply whether the node is the entirety or only part of the
pane.For example,atext node snippethasa trigger, trigger, de ned on it from byte
offsets100 to 105, which happensto coverthe word “badger”. Another text node,
page includessnippeti.e. anotherLED isde ned, onewhich for pageincludessnippet
snippetisincluded at byte offset50 within page

Note the following:

When node pageis presented,trigger trigger is still available.
The Nodeobject will contain, at byte offset50, the snippetNodeobject.

When the two objects havebeen merged (x3.6.10.2) the valuesof the trigger
spanwill be adjustedso the spanstill refersto the word “badger”. In this case
the spanwould be betweenbytes150 and 155.

Now assumethat trigger, when activated,causesall of snippetwithin the view to
be replacedwith new content. If snippetisthe solecontent in the panethen this action

3. MODELLING HYPERMEDIA IMPLEMENTATION 103

is one of “traversal'.lf pageis the focus of the paneand snippetis only a part of the
pane,then activatingtrigger will only causethe bytes150-155 to be replacedby new
content, and the action is ‘replacement'.

This exampleshowswhy the traditional descriptionsof link effect mentioned de-
scribedin sectionx2.5 are not sufcient from an implementation point of view, and
the label appliedto alinking action is dependenton the context in which the action
takesplace.

A spanappliedto a node alsocapturesany nodesthat havebeenincluded within
the area describedby the span. This allows us to model the “picture and caption’
exampledescribedin sectionx3.6.13.2. Consider that the caption existsin-line with
the rest of the text in the node. The text node provides structure to the document
asdiscussedn sectionx2.8.4. In this examplethe caption existsat bytes200-250. If
the imageisinserted at byte offset200%° then the span200-250 will now capture the
imagefollowed by the caption.

3.6.13.5 Pane

The application may declare a Paneclassto be usedin eachof the Subject, Object
and Trigger classesA Panesimplyidenti es one panewithin the view. Whilst a Span
is capableof describing a region within an amount of media, the combination of a
Spanwith aPanecandescribearegion on-screen.

Therefore, in a multi-windowing environment the act of replacementis fully de-
scribed by “r eplacespana in panex with spanbin paney”. In many casex andy
would needto be the sameidenti er in order for the replacementto "make sense’,
howeverthis is not a systemidimitation.

3.6.14 Summay

The Melesmodel greatlyimproveson the SLIPA model. In patrticular:

Document formation is explictly modelled and tied in with linking actions.

16 Systemdesignersshould be careful regading the ne placementof insettions. That is, are images
insetted just-before the referencedpoint or just-after?

3. MODELLING HYPERMEDIA IMPLEMENTATION 104

The modelling of implementation of linking is improved by the useof “replace-

ment' asa common behaviout
Expandablemediatype handling is explictly considered.

The co-ordination and interaction betweendifferent parts of the systemis cap-
tured by the model.

3.6.14.1 Paneoperations

Section x2.5.1 describedthe linking actions of "appear'and "disappear'.lt can be
envisagedthat "appear'can be captured in Meles by specifyinga pane which is not
currently described.However, it is not clearhow "disappearcanbe handled. Further-
more, evenif "appear'is supported asmentioned abovethis doesnot allow anycontrol
over the relativesize,shape,position of behaviourof the pane.

Whilst Melesis competentat capturing linking behaviourswithin apre-detemined
setof panes,it is not weakwith regad to these paneoperations'. Further develop-
ment of the model should consider how these operations and descriptions can be

incorporated into the model.

3.6.14.2 Editing

One common hypemedia action that is not captured by the Meles model is that of
“editing'. This term coversthe creation of new nodes, editing of new nodes, creation
of new links and editing of existing links.

The Dexter model [49], for example,does allow editing; components are pre-
sentedto the client applicationwhich canthen be written backinto the Storagelayer
This approachallowsthe editing of not only atomic components(nodes) but alsolink
structures,which therefore canbe createdby the client.

In orderto expandMelesto coverthesebehaviours,there are severaissuesvhich
must be addressedFirstly, there must be amethod by which clients, via Environment
modules, can commit changesto nodes. Consideration should be given to locking
issuesmerging of distributed changesand accessontrol.

3. MODELLING HYPERMEDIA IMPLEMENTATION 105

Secondly a method should be modelled for allowing the speci cation of links. It
is comparativelysimpleto allow the creation of LEDobjects,howeverthe issueis really
one of how high-level speci cations can be created. Bear in mind that the model
cannot presumethat any particular Environment, Languageor Source modules are
present.

A generalapproach may be to provide a mechanismby which Languagemodules
can declae that they can acceptspeci cationsin certain forms, e.g. clicking within
nodes or text speci cations. This information would be availableto Environment
moduleswhich caninterfacewith their attachedclientsto provide a method by which
userscanspecifylinks in availablelanguages.

Having categorisedgeneralmethods of specifyinglinks, a method could be for-
malisedby which Environment modules can senddescriptionsof theseeventsto the
chosenLanguagemodule.

Theseideasare currently under further development.

3.7 Conclusion

This chapterhasdescribedthe developmentof implementation modelling throughout
this reseach, from the initial conceptsof the High/low model through to the rela-
tively complete Melesmodel which describesn detail the operation of the hypemmedia
system.From this point it is possibleto build systemsasedon theseideas.

106

CHAPTER 4

GOATE

Goate[38] is an application developedover the courseof this reseach and incorpo-
ratesmany of the ideasfrom the previous chapters.Goate is a systemwhich allows
the rapid implementation of linking languagedy separatingthe interpretation of lan-
guagesfrom the implementation of effect. In principle in arangeof environmentsis
supported, although this currently only extendsto the WWW. The source code for
Goate canbe downloaded from http://www.codebunny.org/research/goate/

The name Goate is not an acronym and hasno particular derivation, although
given the ability of the systemto processarangeof linking languagest could be said

that Goate can“eat anything”.

4.1 Development history

As a project, Goate hasexistedfrom an early stageof reseach, although over time
the scopeand aims of the application have expanded. This section details various
signi cant revisionsto the application.

Work towards Goate began with the basicideasbehind the High/low model.
From this point the developmentof Goate hasbeencaried out in parallelwith that of
the models. Working on the application hasprovided a useful meansto explore ideas
and highlight issuesfor the practical issuesof hypemedia systemimplementation.
Theseexperienceslter edinto the developmentof the Nottingham, SLIPA and Meles

models.

4. GOATE 107

Equally, the developmentof the modelshasfed backinto the application. By going
through the processof formulating the modelsit hasbeenpossibleto makethe design
of Goate consistentand the overall architecture hasbeenclari ed. In short, neither
Goate nor Melescould havebeendevelopedin isolation from the other and the work
presentedin this thesisis aresult of the paralleldevelopmentefforts.

4.1.1 Proof of concept

The initial ideafor the project wasto allow XLink behaviourson existingWeb browsers
by modifying content asit passedhrough aHTTP proxy (x4.4). The basicconcept
of this mode of operation wastestedwith a smallPerl program.

This test program operated as a single connection proxy. The HTML pagesre-
guestedwere analysedand for every word which wasn't part of aHTML link, alink
wascreatedto adictionary Web site with the de nition for that particular word.

The designof this program wasfundamentally limited, and waspatrticularly slow
not having beenwritten with ef ciency in mind!. However, the program did prove
that it was possible, by modifying content in transit, to provide higher-level be-
haviours.

4.1.2 Goatel

After the proof of conceptprogram, work beganon Goateitself. Instead of using Perl,
asfor the proof of concept, developmentfor Goate beganand continued in ANSI C.
At this stageGoate ran under OpenBSD only.

At this stagethe focusof the reseach wasstill very much on implementing XLink
behavioursasdescribedin [62]. The linking actions focusedon were bi-dir ectional
links, multi-headed links and exible destination speci cation. [62] only briey men-
tioned the possibilitiesof using Goate to implement other linking languages.

Although published at the sametime as[62], the differencein submissiondead-
linesmeantthat [61] waswritten later. This differencemeantthe scopeof the project
had time to expandslightly and XLink wasno longer the focus of the work, but was

1The processingof an averageWeb pagetook over aminute.

4. GOATE 108

givenasanexampleof alanguagethat could be implementedwith suchasystem.This
paper introduced ‘languagemodules’ which interpret elementsin a XML formated
document and convert them into a specialelement type signifying a click-to-move
link.

At this stageof developmentthe applicationwasn't capableof processingXLink or
any other higher-level languageand simply analysedexisting HTML links, removed
them from the HTML documents,then re-insetted them. This may seema zero-sum
gain, but the processallowed a number of improvementsto be made.

Firstly, documentspassingthrough Goate are correctedin termswhich meantthat
documentsoutput from Goate were often more “correct' than those input?.

Secondly Goate wasableto handle overlappingHTML links/triggers, presenting
the options in a pop-up box. Figure 4.1 showsa rendering of nestedHTML links
in a later version of Goate. In this examplethere is a <a href> speci ed over the
whole sectionto http://www.nottingham.ac.uk and a <a href> speci ed around
the word "Nottingham' to http://www.nottingham.co.uk

The processf homogenisinglinks is akey processan the support of the emulation
of high-levellanguagesandthe common form hasbeendiscussedhroughout chapter
3 with the conceptsof CLS (x3.4), IDO (x3.5.4) and LED (x3.6.13). At this stage
of developmentGoate wasusing a data-typenamedDlink , which is mentioned in the
Nottingham model (x3.4).

Development of Goate continued and the application gained the ability to load
Language modules which declaed links for arbitrary languages.Some examplelan-
guageswere discussedn [64]. This paperdiscussedseveralapproachesof link lan-
guagespeci cation including a SQL-similar semi-naturallanguage,seach resultsre-
turned from a seach engine and a languagebasedon the semanticsof documents
calledCLING which is discussedn more detail later. The seach-engineideabecame

2The corrector ensuresonly that documents are well-formed, and doesnot attempt to make cor-
rectionsthat preseve common interpretations. For example,<p>tagsshould encloseparagraphsput
often an opening tag on its own is usedasa “paragraphbreak’. The corrector should when encoun-
tering a number of unclosed<p>tagsplaceclosing tagsbefore a following opening tag. However, the
current corrector usesa generalcorrection approach of closing un-closedtagsjust before the closing
tag of the surrounding block. Theseissuesneanthat the well-formed document output by Goate may
not give the sameeffectin the browserasthe original non-well-formed one.

4. GOATE 109

FIGURE 4.1: Nestedtriggers

GGoogle (x4.7.3).

This rst implementation of Goate had severalissueswhich were addressedby a
major rewrite. Theseissuedell into two categoriestheoretical and practical.

The theoretical limitations centred around the ememgent design,which waslargely
in line with SLIPA rather than Meles. The designwasnot wholly in line with SLIPA
sincethe conceptsof Presentationand Action were not separatedboth tasksbeing
performed by dynamicallyloadablemodules handling different WWW browsers.

In terms of practicalissuesthe code wasnot structured in a way which made it
easyto add new modulesto the project. Additionally, the code wasnot patrticularly
portable to non-BSD operating systems.Lastly, lack of structure in some routines

madethe code prone to memory-leaks.

4.1.3 Goate?

“Goate 2” is a signi cant re-write of “Goate 1”. Whilst some code sectionswere
adaptedand transfered, the overall structure wasgreatly modi ed. This version of
Goateisthe current one and the restof this chapterrefersto this version.

4. GOATE 110

4.1.3.1 Improvedcodestructure

The layout of the source code itself was changedso that executablesmodules and
libraries could be placedat will throughout the directory structure, with the con g-
uration script for the project being ableto identify and handle eachtype accodingly.
The role of automatic con guration in the project is discussedn depth throughout
sectionx4.2.

A similar approachis usedfor functions suchasthosefor copying memory blocks.
Goate 2 improvesthe structure of source les to reduce memory leaksin several
ways.Firstly, excessiverror checkingwasremovedto reducethe number of execution
branches.In many casest is acceptabldor afunction to return solelyERROBUCCESS
for no error, ERRQRBORWhen the operation couldn't be caried out for reasons
suchasthe availability of aresource or when the supplieddatais invalid in someway,
and nally ERRQRATALfor errors which should stop that instanceof Goate. Errorsin
the last category include the inability to allocatefurther memory or the detection of
conditions which shouldn't arise,e.g. paranoia’'checkson the stateof dataat various
points. Theseerror standads makelibrary functions more predictablefrom the point
of view of calling functions, where previously a function may return obscure error
codeswhich then are executedby the default, FATALbranch.

Aswell asreducing the number of branchesfor eachbranchthe cleanuproutines
— freeing dynamic memory and calling the freeing routines for data structures —
were speci ed in a local macro rather than being listed individually. This made it
easierto spot brancheswhere clean-uproutines were not called, sincethe absenceof
the macro is more obvious than the occasionwhere one out of ve function callswas

missing.

4.1.3.2 Implementation of Meles

Goate 2 hasbegun to implement the Meles model as previously described. So far
these changeshave involved the moving of existing media processingcode into a

4. GOATE 111

Media module®, the useof dedicatedTranspot modules' and moving of someof the
proxy codeinto an Environment module.

This transition to Meles is an ongoing processand in many ways Goate is still
not Meles-compliant. There are two principal limitations of the current Goate with
regad to Meles.One isthe continued focusof HTTP proxying asthe implementation
environment. The prefered designis either to havethe Broker poll eachEnvironment
module askingwhether anyrequestsneedto be sewiced, or to havethe Environment
modules’interrupt' the Broker with arequest.However, neither approachis currently
implemented and therefore the "wait for request'routine to receiverequestsfrom the
browseris embeddeddirectly in the Broker.

The secondprincipal restriction isthat replacementasalinking actionisnot recog-
nised, and therefore document formation is not possible.Indeed, only click-to-move
traversallinks are implemented and the systemasawhole relieson the document for-
mation capabilitiesof HTML itself. As part of the moveto full Melescompliancethe
systemshould recogniseinclusion links within HTML, e.g.images,removethesetags
and re-implement the behavioursusing the standad formation process.

4.2 Development

4.2.1 Automatic con guration

A core part of the build processfor Goate is the automatic con guration script,
configure . This script, written in Perl, providestwo core functions. Firstly, configure
detectsinformation about the operating systemand de nes constantsand includes
les asappropriate. This isdescribedin more detail in sectionx4.2.2. Secondly configure
generatesappropriate Makefile saccoding to the structure of the code itself. This is
describedin sectionx4.2.3.

3Thesemodulesare calledJoin' modulesinternally, which re ects an earlydevelopmentversion of
the Meles model.
4The internal term here is 'Retrieve' modules, againre ecting an earlierview

4. GOATE 112

4.2.2 Platform indegendence

One of the original principles of Goate wasthat it should work with a wide-range
of browsers,and this guided developmentto a proxy-basedsolution asopposedto
client-sidetechnologies(x4.4.3.2).

A major improvementin the developmentprocessfrom Goate 1 to Goate 2 was
amore structured and expandableapproachto portability, making it relativelysimple
to compile Goate on any UNIX-like platform.

Goateiswritten in C. In orderto ensurethat the sourcecodewould be usablewith
a wide range of platforms, the project sticksto ANSI conventions. The project was
principally developedunder OpenBSD using the GCC [37] compiler®. The source
code is compiled with --pedantic-ansi switch setto restrict the compiler to strict
ANSI behaviour These restrictions meant that, for example, macros with variable
number of arguments were not allowed. Although not tested, it is hoped that these
restrictionsmeanthat Goate should be compilable by compilersother than GCC.

The configure script attempts various approachesto compiling test programs
embeddedin the script. By doing this the required compiler parameters)ibrariesand
type de nitions can be detected. These platform-speci ¢ details are placedin a le
named platform.h which is not part of the Goate distribution itself, being entirely
dynamically generatedby configure . platform.h is included by base.h, which in
turn isincluded by evely source le in the project.

4.2.2.1 Typede nitions

The direct useof primitive data-typesis avoidedasdifferent platforms havediffering
de nitions of sometypes.For example,the type for a 32 bit unsignedinteger under
OpenBSD is uint32 _t whilst under someLinux distributions it isu_int32 _t.

The con guration scriptdetectsthe relevantnaming styleand addsto platform.h

SAlthough OpenBSD wasthe principle platform, testing and usewasalsocaried out under Solaris
and Linux. These platforms also used GCC, albeit a different versionto OpenBSD. The difference
in versionsproved to be useful. The version of GCC on OpenBSD was?2.95.3, Solarisused 2.95.2
and Linux 3.3. The version3 compiler provided greatly improved wamings in certain situations, for
example,signed/unsigned comparisons.

4. GOATE 113

a number of #define lines, eachone declaring a type. The symbolsUINT8 UINT16
and UINT32referto 8, 16 and 32 bit respectivelyunsignedintegersand INT8, INT16
and INT32 de ne signedintegers. Thesesymbolsare usedwithin Goate rather than
platform-native types.configure alsode nes a suitabletype for BOOL

4.2.2.2 Function de nitions

Aswell asde ning symbolsthat representdata-types,configure alsode nes symbols
for common functions. For example,some platforms support the function bcopy()
to copy blocks of memory whilst other only havememcpy() In this caseconfigure
detectswhich is availableand assignghe function to the macro COPY (. The con g-
uration script also detectsthe libraries required for certain functions. In the caseof
bcopy() , on someplatformsthis isde ned in string.h andin othersstrings.h

Other macros de ned in this way include ZERO()to blank an areaof memory, as
well asFNCTL()which masksdifferencesin systemfnctl() functions and SETPGRP()
which setsthe processgroup.

A secondpatrt to the function con guration isto include extracodeinto the build
processfor functions used which are not presenton a particular platform. This is
usedto makeasprintf() availableto systemssuchasSolaris,asdescribedin section
x4.3.3.1.

4.2.3 Codedependencies

The Goate project includesanumber of libraries,somefor project-wide useand some
for usesolelyby parts of the system.In eachcasaf alibrary hasbeenchangedthe code
which dependson it should alsobe regeneratedn order for the program to function

properly. For example,aspart of compilation the offsetswithin data structuresof a
member variableare calculatedand usedexplictly, e.g. member variablex is present
at offset 20 within structure y. If the structure of y is altered in terms of members,

6In this particular casethe two sourcefunctions, memcpy()and bcopy() , are not completelyequiva-
lent sincememcpy()generallycannot handle copying to an overlappingsection. Therefore, Goate must
treat COPY ()asthe more restrictive memcpy()

4. GOATE 114

ordering or typesthen x may no longer be at offset 20, and attemptsto retrievedata
at the basememory location of an object plus 20 byteswill retrieveincorrect data.

Equally, it isinef cient to rebuild the entire project for evely change.Although the
compilation time for the entire projectis not massivé it doesintr oduceanunnecessar
delay especiallywhen development requires frequent recompilesto test or debug
code.

The build processof Goate is controlled using Make les. A Make le is a plain-
text le which containsa number of instructions for processingby the tool make A
Make le consistsof anumber of directives,eachone consistingof alabel, an optional
list of dependenciesand a number of commandsto execute.The label describesthe
result of this command, the dependenciesanbe le-names or labels.For example,a
Make le directiveto build the program “myprog'® build maylook like:

myprog: myprog.h myprog.c
gcc -0 myprog myprog.c

If either myprog.h or myproc.c change$ calling makewill rebuild myprog How-
ever if neither le haschangedthan repeatedcallsof makewill not rebuild the pro-
gram.

Dependencieson libraries can be expressedn a similar way In the following ex-
amplealibrary called ‘'mylib' is built and usedby "myprog":

mylib.o: mylib.c mylib.h
gcc -c -0 mylib.o mylib.c

myprog: myprog.h myprog.c mylib.o
gcc -Imylib -0 myprog myprog.c

Make les typically include the directives clean'to removeanyobject les andreset

" Approximately 20 secondson an Intel P3-667 under OpenBSD 3.5.

8Note that the format of Make les make them suitable for non-programming tasks.This thesisis
typesetin IATEX andthe build-pr ocessnvolving, multiple callsto latex aswell ascalling bibtex where
appropriate, is describedusing a Make le.

9Determined by checkingto seeif the last modi ed dataon the output myprog le is older than
that for either myprog.c or myprog.h.

4. GOATE 115

the build processand “install' to install to resultof the build process.

In order for the build processof Goate to be as accurate'aspossiblein terms of
building neither too little nor too much, the Make les which describethe build pro-
cessmust contain alist of accuratedependenciesEarly efforts to maintain theselists
accuratelyprovedto be error-prone, and so configure wasadaptedto automatically
generateall of the Make les for the project.

configure scanseachsource le in the project and examinesthe #include lines
to determine which les dependon which, for this information dependenciexanbe
constructed. In somecasesles include header les which are not associatedvith a
particular library suchasplatform.h mentioned above.In thesecaseghe header les
themselvesare addedto the dependencylist for aparticular le. The configure script
can handle transitive casessoif a.h includesb.h, and b.h includesc.h then any le
that dependson a.h will alsodependon c.h.

4.2.4 Code structure

The source code for Goate is arrangedin a number of directories.Eachdirectory is
of a certain "type' which determines how the source within it is built. The type of a
directory detemminesthe instructions usedfor the Make le. For example,librariesare
compiled and linked but do not form an executableprogram, therefore the compi-
lation commandswill differ for librariescompared to other types. The threetypesof
directory are “binary', ‘lib' (library) and ‘module'.

The default type of a directory is “binary'; other types are set by placing a le
named .type in the directory which containsthe type. Binary directoriesnominally
contain codeto be built into an executable,the name of which is setin a le named
.bin . Dir ectoriescontaining no code are valid and are usedto provide structure. For
example,the root of the Goate directory structure containsno source code itself but
containsdirectorieswhich do contain source.

Lib-type directories contain source code which are compiled into dynamically
linkable libraries used by other parts of the project. The name given to libraries is
basedon the relative (to the project root) directory pre xed with gt, with the un-

4. GOATE 116

derscoe characterdividing elds. For example,if the source is placedin a directory
at root /media/image the library namewould be gt _mediaimage The le nameis
the library namedsufxed with .so andthe version.The versionof the library is held
in a le named.ver within the library directory. A full library namewould therefore
resemblegt _mediaimage.so.0.1 . In addition to the version-speci c le, asymbolic
link ismadeto a le namedwithout the versionname.Having both allows 3rd-party
programsto link to a speci c versionof the library or the latestversion.

The nal type of directory is ‘'module’. Module-type directories de ne source
which should be built into a dynamicallyloadable module. The name of the direc-
tory is taken asthe module name and the name of the previousdirectory is taken
asthe classof the module. For example,the directory structure might include the
pathsroot /animal/camel and root /animal/badger where camel and badger are
module-type directories.Basedon this directory structure configure knowsthat both
camel and badger are modules of type "animal' and when installing the modulesto
their nal locationsboth modules,which are compiled to single les, will be installed
in adirectory namedanimal .

In addition to the directory typesdiscussedabovea le named .ignore canbe
placedin adirectory which instructs configure to ignore the directory and any sub-
directories. This is used, for example, for lib-type directories where some headers
should not be installed. In this casethe headerswould be placedin a sub-directory
named, typically, private '° anda.ignore le would be placedin private . .ignore
les are alsoplacedin directorieswhich contain skeletoncon guration les, although
configure separatelydiscoversdirectories named etc and addsto the appropriate
Make le instructions to install these les unlessthe les alreadyexist.

The current layout of the Goate project is shown below.

Dir ectory Type

/ Binary
/broker Binary
/broker/etc Ignore
[core Lib
/core/private Ignore
lemul Binary

10The source of the library would obviously needto include “private/name' rather than just ‘name".

4. GOATE 117

lemul/asprintf Library
lenv Module class
/env/web Module
/env/web/render Module class
/env/web/render/defren Module
/env/web/render/modern Module
/env/web/render/netscape4 | Module
/lenv/iweb/webmod Library
/http Library
/nttp/private Ignore
/join Module class
oin/defjoin Module
anguage Module class
/language/ggoogle Module
/language/ggoogle/etc Ignore
/language/ghurle Module
/language/ghurle/etc Ignore
/language/htmllink Module
[retrieve Module class
Iretrieve/httpret Module
Iretrieve/httpret/etc Ignore
/scripts Ignore
/sysmod Library
lutils Binary
/utils/parsefile Binary

Note how directory typescan changethroughout the depth of the structure. For
example,the module "'web' containslibrariesand other modules.

4.2.5 Objectorientation

Although Goateis written in C rather than C++! the principlesof object-orientation
are broadly followed. For each data-stiucture in the project there is an associated
library of functions for processingthat type.

It is also possibleto emulate OO behaviourssuch as abstraction and member
protection. Abstraction is possiblewith a number of approaches Firstly, the classcan
contain atype which consistsof a union of possibletypesand a memberthat signi es
which member of the union is active. This approach is used by the Node(x4.3.4.2)
class.Alternatively, void * pointers point to arbitrary structures. This approach is
usedin the handling of the XML/HTML routines where functions can processone
of a number of sub-classtypes. Like the union approach, a value is also passedto

10n re ection, C++ would havebeena preferablechoice. The initial work on Goate wasdone in C
and from there developmentalinertia and investmentin existing code preventedthe change.

4. GOATE 118

signify which sub-classs being referred to.

Member protection, i.e. private functions and variables,is possibleby declaring
those memberswithin the .c ratherthan the .h les. Whilst it is possiblefor a calling
function to locatethe appropriate memory location by seaching the symboltable and
manually manipulating the values,this is considered to be largely missing the point
ascasualalteration is not possible,and essentiallyin any languagewhich allows free
accesso memory suchapproacheswill alwaysbe available.

Each classde ned in the project supports anumber of common functions: namdnit
to initialise valuesin the object to their defaults,nameNewwhich is asnamdnit but
createsa new object in dynamic memory rather than working on an existing object,
nameClean to freememory usedwithin the object, nameFree which isasnameClean
but deletesthe object itself, nameCopywhich copiesdetails from one object to an-
other and nally nhameNewCopwhich createsa new object and copiesthe detailsfrom
an existing object into it.

Goate usesa number of macrosto simplify the creation of “classes?. This means
that oncenamdnit , nameClean and nameCopyhavebeendeclaed nameNewnamed-ree
and nameNewCopgan be generatedautomatically

Additionally the datamembersand functions associatedvith handling linked lists,
a common type within Goate, are supplied using macros. Therefore, functions such
asnamdnsertBefore do not needto be re-implementedindividually*® or cut-and-
pastedbetween les. This approach,whenintr oduced, greatlyreducederrorsin linked-
list handling.

4.3 Goate architectur e

4.3.1 Overview

Figure 4.2 showsthe current state of the Goate project. As previouslymentioned in
sectionx4.1.3, Goate doesnot currently support multiple environments and contin-
uesto run asa HTTP proxy, a processdescribedin more detail in sectionx4.4. In

21n the descriptionsof Goate the useof object-orientated terminology is presewed.
131t hasbeensuggestedhat this approachis similar to templatesin C++.

! Content Source :

www Embedded Google WHURLE :

Transport R B - 'g.u.a'g;e. .E

: HTTPret : : HTMLIink GGoogle GHURLE :
Goate Broker

Me .d .u.i Enwron ment .E

Defjoin Webenv :

... SR .E

Modern Netscaped4 Defren .

FIGURE 4.2: Current stateof Goate

sectionsx4.7, x4.5, x4.6 and x4.8 the implementation of particular areasis discussed.

4.3.2 Executionenvironment

Goate runs under UNIX-like operating systemsasa forked process.On startup the
application starts n'4 additional copiesof itself. The original processmonitors these
“child' processesnd restats them should one exit prematurely.

Eachchild processvaitsfor arequeston the appropriate incoming network port*°,
Since having multiple processedistening to a single port leadsto the possibility of
raceconditions, the port is protected with a semaphoe so only one child canreceive
arequestat atime. When the start of arequestis requested,.e. anincoming network
connection is made, the child releaseghe lock and sewicesthe request. When the
requestis completed the child attemptsto take possessiorof the requestlock and
blocksif necessar.

In the caseof retrieving a document, the rst requestmade by a browserwill be

14The precisenumber is userde ned viaacon guration le.
15Again, this valueis usercon gurable

4. GOATE 120

for the HTML le itself. Once this is retrieved the browserwill havea list of other
resourcesto load suchasCSSstylesheetand inline images.With this information the
browser may make multiple simultaneousrequeststo the sewer/pr oxy. This means
that multiple child processesnaybe sewicing asinglepagerequest.There is currently
no limit on the number of child processethat maybe usedby asingleclient, although
the ability to restrictthis is under consideration.

4.3.3 Projectlibraries

From the list of source les in sectionx4.2.4 four project-wide libraries are evident:
“asprintf, “core', "http' and ‘sysmod'.

4.3.3.1 asprintf

Linux and the BSD family of UNIXs provide a function named asprintf() [1]
which outputs a formatted string into a region of memory. The behaviour is simi-
lar to sprintf() exceptthe function usesmalloc() to allocateexactlythe amount of
memory neededratherthanrelyingon a xed buffer. The asprintf() function isuse-
ful asit removesthe needto considerin advancethe sizeof the xed buffer, and then
to ensure that no buffer-over ows can take place. The function is used extensively
throughout Goate.

Unfor tunately Solaris® doesnot include asprintf() aspart of the standad li-
brary and so this must be provided by the project where needed.The emul directory
within the directory structure is resewed for librariesneededfor cross-platfom com-
patibility. Currently, the only library under this structure is “asprintf which provides
asprintf() for platforms which do not supplyit. As part of the con guration pro-
cessconfigure detectsthe necessityof the asprintflibrary andincludesit in the build
process.

16 And possiblyother UNIX systemanot tested.

4. GOATE 121

4.3.3.2 cor

The library "core' providesfunctions and structureswith associatedibraries(x4.2.5)
useful throughout the project. For example,the structure/librar y combinations for
data-typessuchasIDO(x4.3.4.3), Node(x4.3.4.2) and Nodeloc (x4.3.4.4) are de ned
within core.

Other utilities provided include the functions to handle con guration les, the
macros describedin sectionx4.2.5 andthe consolereporting routines usedfor debug,
waming and error output.

4.3.3.3 http

“http' providesstructuresand functions relating to handling HTTP transactions.This
library existsat the root level asit is used by the Broker'’, the “web' environment
module and the HTTPr et' retrievemodule.

4.3.3.4 sysmod

‘sysmod' relatesto the handling of modules loaded by the Broker. This library is
relevantto all parts of the project sincethe structuresprovided include those usedby
modulesto describethemselvedo the broker.

4.3.4 Data-types

This sectiondiscusseg selectionof classes$o give an overview of the Goate approach
to the modelling issuegreviouslydiscussedFor discussionpurposesthis sectioncon-
tinues with the naming style of the restof the thesisand usesinitial capitalisationfor
“class'names,e.g. NodeSparasopposedto nodeSpanasit appearsin the code itself.
However, the full capitalisationof classnamed after acronyms/abbr eviations previ-
ously usedis not presered asit canlead to confusion with typessuch asldoSpan
which would be written IDOSpan

17 Although this will not be true once Goateis fully Meles compliant.

4. GOATE 122

A common type of member variableis "'enum'. This is a shortened form of “enu-
meratedinteger’, aprocesdy which asequenceof symbolicnameshasanincremental
integer value.For example,a sequenceof symbolsmaybe RODJANEand FREDDYhe
compiler would assignthe integers0, 1 and 2 to thesesymbolsrespectivelyThe sym-
bols canbe usedwith integer typesand form a usefulway of storing one of a number
of options where the associatedsalueitself is not important.

4.3.4.1 Pointersto objects

For eachclassde ned thereis atype de ned for apointer to that object. The name of
the type is the name of classwith the "P' sufx. For example,given a classAnimal, a
pointer to the classwould be of type AnimalP.

4.3.4.2 Node

The Nodeclasslescribesa singlenode. The classcontainsan enum namedtype which
describeghe type of node described.Possiblevaluesare currently NODHYPBUNKNOWN
NODHYPEXMILLNODHYPEATMLNODHYPETEXTand NODHYPHMAGEThe value
NODH YPBJNKNOWNHNNIly for unrecognisednode-types;the othersall signify aknown
type'8. The precisetype is expandedupon by populating a Mimetypememberwith the
Nodeclass.

The Nodetype containsa member named data of type Nodedata Nodedatais a
union of the typesusedto describenodes,e.g. XmIDoaisedfor both XML andHTML
dataand Text usedfor text data. SinceNodedatais a union rather than a struct, the
membersof the union occupyan overlappingareaof memory which is more ef cient
but doesmeanthat only one of the memberscanbe in use.

4.3.4.3 Ido

The Ido classdescribesa LED object. The name persistsfrom the time of the SLIPA
model, although the scope has changedand is still changing asthe work towards

BCurrently the imagetype is not implemented.

4. GOATE 123

Meles compliance continues. The classname hasnot beenupdated to Led to avoid
large-scalealteration of existing code.

The classhasfour members:subject (IdoSubject), object (IdoObject), trigger
(IdoTrigger) anddirection (enum). The rst threememberscorrespondto the rel-
evant conceptsof LED whilst the direction attribute providesa clue regading the
default presentationof the link. If, when the broker is realisinglinks, a Ido object
doesnot havepresentationdetailssetfor one aspectthen a setof default attributes -
basedpatrtially on userde ned settings- are applied(x4.7.1).

idoSubject describesthe subject part of the link and contains span (IdoSpan)
and pres (IdoPres).

IdoSpan consistsof base (Nodeloc), all (boolean), media (enum), subnode
(IdoSnspan'®), locator (IdoLocator). base simply holds the node location at which
this spanexists.all , if true, signi es that the spanrefersto the entire node. This
is an implementation optimisation to savethe evaluation of the more complex sub-
node part for the common task of refering to an entire node. The datarelating to
a sub-node part is stored in subnode Note that IdoSnspanis a union of classesand
therefore aswith Nodeonly one member can be safelyused. media determineswhich
member of the union is used.Finally, locator describeghe locator.

IdoSnspan, aspreviouslymentioned, is aunion of threeclassestdoText , IdoXml
and Idolmage. Each of thesetypesdescribesa spanspeci ¢ for a data-type.ldoText
consistsof two unsignedintegersrepresentingthe statt and end offsetswithin a sec-
tion of text. The end-points for IdoXml consistof an item number?®® and an offset
within that item which is only relevantfor XmlText types. Xmllmagecurrently con-
tains four points describingarectangle— left, top, right, bottom — although in the
futur e arbitrary areasmay be described.

The IdoLocator structure contains information that allows the contents of the
spanto bere-calculatedasdescribedin x3.5.5.1. Goatedoesnot currently support the

¥IDO Sub-Node span.

20A XML/HTML document is describedusing a number of Xmlltems which are structured both in
list andtreecontext. That is, from any particular Xmlltem it is possibleto move forwardsand backwads
or up and down the tree.Obviously, moving in one context alsoaffectsthe position in another. During
parsingeachXmlltem is assignedan incremental item number' relating to its position in list context.

4. GOATE 124

re-evaluationof spansand asyet no languagemodulesrequire them. The IdoLocator
classhasthe member of module (Moduleld) and desc (string). In principle, when a
IdoSpan needsto be re-evaluatethe broker would seach its list of loaded Language
modulesfor one with a matching Moduleld valueand passdesc to that module. The
format of desc is proprietary to the appropriate languagemodule.

IdoPres capturespresentationinfor mation and hasthe membersactive (boolean),
backColour (Colour), layoutActive (boolean)andlayout (enum). The active ag
de nes whetherthis presentationinfor mation should be considered or not. backColour
contains a colour to shadethe background of the containing object; the Colour
structure itself hasan active member, when this is setto false,the colour is not
applied. layout describeshow the parent object appearson screen. For example
IDOLAYOUPOPUR used for link triggers where multiple choicesare displayedin
a pop-up box?' and IDOLAYOUBLOCKIisplaysmultiple triggers within in a two-
dimensionalbox??. Not all layout options apply to all situations. layoutActive ags
whether the layout eld should be considered or not.

IdoObject describeghe object part of the link and hasthe membersspan (IdoSpan),
focus (ldoSpan), pres (IdoPres). span and pres are the sameasfor IdoSubject .
focus describesthe areathat should be highlighted in the view in situations where
the client application cannot display all of the desired content within the pane. For
example,the panemay scwoll to the start of the areadescribedby focus.

IdoTrigger capturesatrigger describedasaconceptin sectionx2.7. Members of
IdoTrigger are span (IdoSpan), pres (IdoPres), event (IdoEvent), title (string).
span and pres behaveasdescribedpreviously title isthe text usedfor the trigger?3.

IdoEvent describesan eventwhich causeghe link to be activated.Currently the
structure hasthe solememberevent (enum). Valuesof event canbe IDOEVENTLICK
and aspart of the move towards Melescompliance,IDO EVENTNSTAN<hough this
latter type is asyet unused.

21This is the default style for GGoogle, describedin sectionx4.7.3.

22This is the default stylefor GHURLE, describedin sectionx4.7.4.

23For conformanceto the ideaspreviouslypresentedthis membershould reallybe part of amodi ed
presentationclass.

4. GOATE 125

4.3.4.4 Nodeloc

Nodeloc describesthe location of a node within the node-spacea HTTP URL, le
location etc.?* are describedusing the Nodeloc classAs a part of the Spanclassused
in Ido (x4.3.4.3) objects, Nodeloc objectsare usedthroughout Goate.

Nodeloc hasthe membersprotocol (enum), host (string), port (integer), path
(string), file (string), customProto (string) and customDest (string).

The classis specialisedowards locations in the, broadly, URL form. protocol
is one of NODELCRROTOTTP NODELCRROTOGITTPS NODELORROT®GTP or
NODELCRROT@USTOMhe rst three options make use of the host, port , path
andfile membersto breakthe addressinto logical chunks. Other protocols suchas
NFS could conceivablybe added.

In the caseof NODELORROTQUSTOHMe elds customProto and customDestare
usedto describethe location. The format of these elds is considered proprietary
to modules which usethis type and a "covenant' betweenthese modules must exist
regading the format.

4.4 Operation asaHTTP proxy

441 HTTP overview

HTTP (HyperText TransferProtocol) [34] wasdevelopedto complement HTML
and is simple protocol for the transfer of les over a network. The presenceof the
term "Hypertext' in the nameis misleadingasthe protocol hasno greaterbiastowards
Hypertext work than any other andis ageneric le transferprotocol.

HTTP isaclient/ser ver protocol. The client machinesendsa HTTP requestto a
sewver which respondswith the requesteddocument or an error condition. The ow
of information is shownin gur e 4.3.

24Currently Nodeloc is not capableof describing an in-memory addressas required for Meles
(x3.6.13.2).

4. GOATE 126

I:I Response =

(\

7 = Q
Request

Client Server

FIGURE 4.3: BasicHTTP request

4.4.1.1 Version0.9

The rst releasedrersionof HTTP wasversion0.9 and wasan extremelybasicsystem.
The client sentasingleline to the sewerin the form of “GETpathname”. The sewer
respondedwith aline in the form of “ statuscode messag€'.

The statuscodeis athreedigit value,the rst digit of which determinesthe general
classof code. For example,series200 codesare successodes,400 codesrelate to
failure to retrievethe document®® and 500 seriescodesrelateto an error on the sewver
side such asa CGI script which failed to execute.The accompanyingmessages a
free-form text messagavhich is provided for human inspectior’® and hasno systemic
purpose.

If a le wassuccessfulocatedit would be sentimmediately after the statusline, at
which point the sewverwould terminate the connection. EachHTTP 0.9 conversation
coversonly a single request. The need to renegotiate a connection with the sewer
for eachrequestis a considerableinef ciency when requestingdocumentsconsistsof
multiple les suchasapagewith accompanyingimages.

4.41.2 Versionl.0

HTTP 1.0 greatly expandedthe abilities of the protocol. In generalterms both the
requestand responsdormatswere expandedto include “headersafter the initial lines.
Theseheaderstook the form of “key: value ”. A blank line representedthe end of
the headersandthe start of the “entity’, i.e. the databeing sent. Additionally the range
of requestcommandswere expandedfrom simply GETto include HEAD— retrieve

25404, the code for “document not found”, hasentered the common Web vemaculat
26presumablydebugging sincethis messagés generallynot displayedto the userby client software.

4. GOATE 127

only the headersand not the entity — and POST— senddatato the sewer. Other
commandsin the speci cation, PUT DELETELINK and UNLINKare not commonly
used.

Note that in HTTP 1.0 both requestsand responsesan contain entity data. In
the caseof arequestthe entity datais that submitted to the sewer, for examplethe
contents of aform.

A full analysisof the facilities provided by the addition of headersn HTTP 1.0 is
not required for this discussion.However, the main points are:

Conditional retrievalsso that an entity is only sentif it haschangedsincethe
client lastretrievedit.

The datatype of the entity can be speci ed asa standad MIME type, freeing
the client from havingto guessthe datatype by the lename.

Connections betweenthe client and sewer canbe kept open for multiple trans-

actions.

4.4.1.3 Versionl.l

The latestversionof HTTP, 1.1, hasintr oducedincrementalrather than revolutionary
improvementsover 1.0. The systemof “entity tags®’ wasintroduced to make the
detection of new document versionsmore ef cient than the “lastmodi ed’ method
usedwith HTTP 1.0. Also, clients were given the ability to requesta subsetof a le,
rather than the entity which is usedto download assistanc@rograms.

4.4.2 Proxying

HTTP proxying refersto relayingHTTP requests/responseshrough anintermediary
sever, rather than having the client and seiver communicatedirectly with eachother.
Figure 4.4 showsthe information ow in this case.

2TEntity tagsare essentiallychecksumsunique to all copiesof adocument on a sewer.

4. GOATE 128

Response Response J;L
L
~ > llll]l ~ |= Q

. Request Request
Client Prox

FIGURE 4.4: Proxy HTTP request

] 4//' I

O
IS R,

I

I

|| |

|

-
Internal

FIGURE 4.5: Proxy in use

HTTP proxieshavea number of uses.Firstly, a proxy may be usedfor an environ-
ment where anumber of computersshae aconnectionto aremote network, typically
the Inter net, and shae acceswiaa proxy. Suchan arrangementis shownin gur e 4.5.

When a le is requestedfrom the remote network it can be savedby a "caching
proxy' and future requestsfor that le can be sewved from the proxy rather than
making a freshconnection to the remote resouice. This hasthe bene t of increased
performancefrom auserpoint of view, sincethe connectionto the proxy will, in most
casespe signi cantly quicker than the connection to the remote resource. Secondly
this reducestraf ¢ acrossthe wide-arealink, which in somecasesill be metered, and
sousing a cachingproxy reducesoperating costs.

Another advantageof proxy useis accessontrol. Sincein an arrangementsuch
as gur e 4.5 only the proxy machineneedsaccesdo the extemal network, a r ewall

4. GOATE 129

can be con gur ed to reject outgoing HTTP requests$® from other machinesin the
network. With this limitation in placethe proxy sewer can act in an accessontrol
manner only allowing accessnly to certain machines,identi ed by IP address,or
usersidenti ed with ausemameand passwod combination. Additionally the logs, of
which proxy tracking siteshave been visited and by whom, may be usedto enforce
the “allowed content' policiesof the organisation.

In somecases proxy may run asasewicedirectly on auser'smachine. This may
be done becausethe proxy software has abilities in terms of caching, routing etc.
not supplied by the client software directly. Often there is no differencein the proxy
software betweenrunning asa part of the network infrastructure and running asa
personalsoftware, the differenceis only in the con guration of the software, i.e. to
allow/disallow connectionsfrom other machinesFor example,Privoxy [84] isaproxy
which is often run asa personalsetvice although it may alsobe run in infrastructure
mode.

4.4.2.1 Suppot for HTTP proxies

Routing queriesviaaproxy sewerisnot only supported by the main Inter net browsers
— Internet Explorer, Mozilla and its derivativesand Opera — but alsoby relatively
basicbrowserssuch asLynx and Dillo. This widespread suppott is for two reasons.
Firstly, proxiesare an integral part of many organisations'network infrastructure and
to not support proxying would dramaticallyreducethe usefulnesf a browser It is
not the casethat proxy support is merely a "nice extra'.

Secondly support for proxiesis simpleto implement. Normally aHTTP request
for a pageis sent directly to the referenced sewver. To support a proxy sewer the
only necesssarchangeis for the requestto be sentto the proxy sewer's hostname
regadlessof the nal destination and for the name of the destination sewer to be
addedto the HTTP request.

28 r ewall could either block ports 80 and 81 which are commonly usedfor HTTP traf ¢ or block
all outgoing connectionsfrom other machines,dependingon the administratorspreference.

4. GOATE 130

4.4.3 Contentalteringproxies

HTTP proxiestraditionally passcontent through unaltered. However there is no rea-
sonwhy this hasto be true, and sucha shift providesa usefulopportunity for extend-
ing the abilities of a common Web browser[16]. This approach hasbeen taken in
academiowvork suchasDLS-proxy [20][33] and Webvise[43] aswell astools suchas
Privoxy [84].

4.4.3.1 Proxyingasan implementationplatform

Section x3.3.3 discussedhe high/low translation requirementsfor traversal-centric
link modelling whilst sectionx3.6.11.1 re-examinedthe requirementsfrom the point

of view of adocument-generationsystem.In this sectioncontent-altering proxiesare

evaluatedasan implementation platform againstboth setsof requirements.

Section x3.3.3 statedthat HTML could be considered a low-level traversallan-
guageif it were possibleto write into the destination document in order to place<a
href> tagsfor back-links’® and <a name>tagsto identify in-document positions re-
ferred to. Whilst it may be possibleto allow write-acceson an limited intranet this is
not true for the Inter net at large.

The useof acontent-altering proxy cansolvethis issue.Although it is not possible
to write to the destination document on the remote sewer, it is possibleto change
the document asit passeshrough the proxy. This canbe describedaswriting to the
document “in transit' or “at the point of delivery’. From the point of view of the
browser no distinction is made between writing to the document in transit or on
the sewer itself, providing all accesseare madethrough the proxy. In fact, writing in
transitis more exible than writing to the sewer, asachangeto the sewer copy would
be visibleto all usersof the sewer copy, whilst the proxy approach allows customised
changedfor eachuser

Regading the document generationrequirementsdescribedin x3.6.11.1 there is
a need for a way of sending generatedcontent and event declarationsto the client.
The proxy approach is suitable for the implementation of an interfaceto a single

29The return part of bi-dir ectional links.

4. GOATE 131

classof client, a WWW browser Whilst with the traversal-centricapproachthe proxy
is altering existing content, i.e. the basicdocument staysthe samewith extra tags
being added, with this approach the proxy is generatingthe document itself, based
on de ned links. The browseris unaware of this difference,and from its point-of-

view it is making arequestfor a URL and information is being returned. The URLs

generatedby the proxy would needto encapsulatehe ideaof node locations, and of
which eventis being activated.

In the caseof non-click events,other WWW features can be used. For example,
adding <meta refresh> tagsto the <head>section can create a time-out for the
entire page. Additionally, JavaScriptprovides many options such asdouble-clicking
and hovering.

Asmentioned, Goateis not yet Meles-compliantand remainstraversal-centricThe
modelling of proxying usedis the rst of the two approachesdetailed here, although
work hasbegun to shift towards the document-generationview

4.4.3.2 Proxiesrersuglient-sidetechnologies

Instead of using a proxy to alter content receivedby a browser, the sameeffect could
be achievedby the use of client-side technologies such as Java,Flash or browser
speci ¢ plug-ins such as XUL for Mozilla and ActiveX on Internet Explorer. The
original argumentsin favour of the proxy approach highlighted the fact that client-
sidetechnologiestendedto be more restrictivein the availability of clients.

For example,although Javais supposedlya "write once, run anywhee' language
there are still platforms, suchasOpenBSD, which do not havea Javainterpreter. Flash
isalsorestrictedto the more mainstreamplatforms. Furthermore, aspeci ¢ plug-in for
abrowsermay be restrictedto a particular browser/platfor m combination. The proxy
approach allowsfor the maximum of compatibility by working with HTML which is
common to all WWW browsers.However, evenhere someclient-side featurescanbe
usedto improve the userexperienceif desired (x4.8.1).

With the move towards Meles and a view where userscan connectto the system
with avarietyof clients,HTTP proxying no-longer holds aprivilegedplace.Indeed, an

4. GOATE 132

Environment module (x3.6.11) could be written to provide aJava or other) interface
to the systemfor suitable clients. However, HTTP proxying is still the preferable
mechanismfor interfacing with a wide-rangeof WWW browsers.

4.4.4 Openaccess

In [93] ideaswere explored regarding how usersaccesshe proxy. The paperdiscusses
the situation where a useraccessea Goate enhanced'pagewithout going through a
Goate proxy. In this casethe userwould seethe pagewithout the extralinks added
by Goate.

One suggestionwas that a waming messagecould be included in the original
page.This messagavould be detectedand removedby the Goate proxy and sowould
only be visibleto usersnot using Goate. However, the usermaynot havethe technical
ability to changetheir proxy settingsor be unableto do sofor reasonof infrastructure
or accessights.

An altemative suggestionis to expandthe way in which Goate receivesequests.
With the normal proxy method the remoteresourceisidenti ed on the rst line of the
request.The altemative method would require Goate to look alsofor requestswhich
seemto be for a Web page on the Goate sewer, with the arguments on the URL
line identifying the remote resource. Goate would retrieve and processthis remote
resource and return it to the browserasnormal. This meansthat a Goate-modi ed
pagecould be requestedwith URLs suchas:http://goateproxy/get=www.foo.com

The link <a href> son this pagecould be altered by Goate sothat further requests
for anyresouice are routed through the proxy in the sameway.

The processof initially moving the userto the appropriate URL could be auto-
mated. The Web sewer hosting the pagecould detect that the requesthasnot come
via a Goate proxy by checkingthe “Referrer” headerand respondwith a 300-series
HTTP responseo automaticallyre-direct the user'sbrowserto amodi ed URL.

4. GOATE 133

45 Retrieve modules

Retrieve modules handle tasksrelating to the retrieval of data. The role of Retrieve
modulesis that of Transpot modulesin Meles. The differencein terminology exists
asthe concept of Retrieve modules wasintroduced to Goate before Meles had been
formulated.

The broker in Goate usesa function named retrmodGet() which attempts
to satisfy a request using the available retrieve modules. Each module provides
a function named retrieveCanhandle() which, when passeda Nodeloc object,
will return the enum code SUCCESI the module can handle the location, and
RETRIEVERRQROTSUITABLBtherwise.

If a module respondspositively to the retrieveCanhandle() call the function
retrieveGet() in the module is calledto retrievethe data. The requestis passedo
retrieveGet() in aRetrreq object.

The Retrreq (RETRieve REQuest) structure capturesvariousdata relevantto a
requestand is de ned aspart of the ‘sysmod'library (x4.3.3.4. As well asthe rele-
vant Nodeloc the structure containsinformation suchaswhether the retrieve module
should expectfurther requestdrom this sourceand how to behaveunder certain error
conditions. Furthermore, the dataretrievedfrom the source is passedack using the
sameRetrreq object. This is possiblesincethe Retrreq object is passedby pointer

rather than by value.

45.1 HTTPret

Currently, only one retrieve module has been written, "HTTPr eq' which retrieves
datafrom HTTP connections.The module itself is relatively small sincethe routines
to handle HTTP connectionsare suppliedaspart of the project-wide HTTP library
(x4.3.3.3), leavingHTTPr et to provide awrapperto thesefunctions.

4. GOATE 134

4.6 Join modules

The Join modules in Goate are a modelling precursor to the Media modules in
Meles (x3.6.10). The original design of Join modules featured a single operation,
joininc()

Despite the name of the constituent there is not a join() operation asin the
Media constituent of Meles (x3.6.10.1) sincethis operation is closelyrelatedto the
implementation of non-traversallink actions.Although the designof Join moduleshas
been supersededy the modelling in Meles, the original ideawasfor more than the
single operation of joininc() to be introduced asthe ideasregaiding link modelling
were expanded.

joininc() isanoperationnot presentin Melesandrepresentsadifferent approach
to the taskof trigger integration. In Melesthe Environment module is responsiblefor
integrating declaed eventswith Nodeobjectsin awaysensiblefor the implementation
platform whilst with this approach the integration is performed by the joininc()
method within a Join module. The basisfor this approachis that declared eventswill
occupy an amount of spaceon screen,i.e. avisualtrigger.

The joininc() method takesa list of Ido objects,and for the trigger part of each
Ido object the data structure of the node is altered to include a "marker' within the
structure which describesvhere the trigger exists.This markerrequiressupport within
the content data-stucture to allow associationof regionsof the describedmediawith
a particular ldo object. For example,in the XmlIDocstructure a valid member of the
structure wasXmlLink®® which referedto anldo object. Oncethe markersare present
for anode object, an Environment module cantranslatethem into activetriggers.

There maystill be further translationrequired to get the structure into aready-to-
implement form, although this is considered to be platform speci ¢ and takesplace
outside of the Join module. For example,since HTML <a href> links cannot be
nested natively, the structure must be analysedand where nestedlinks are detected
the nesting must be broken into a sequenceof single or multiple destination links.

The disadvantagesf the joininc() approachto trigger integration include aclose

30There is no connection betweenXmiLink objectsand the XLink linking speci cation.

4. GOATE 135

associationwith visualtriggers, the "corruption' of the media data-typesand a pre-
sumption of how the triggers should be integrated with the implementation platform.
However, the approachdoeshelp restrict code repetition for environmentswith simi-
lar requirements.Whilst the joininc() method is not presentin the versionof Meles
aspreviouslydescribed,future work may seekto include a versionof joininc() , or
perhapsa setof functions providing someof the aspectf joininc()

Although joininc() isthe only method with affectsdata,anotherfunction present
in eachJoin module isjoinCanhandle() which takesasits argumentstwo nodesand
an action enum. The function returns if the module can handle this combination of
nodes and action. Valid symbolsfor the action enum are JOINMQRBRCTIONVHOEE
JOINMQBCTIONPART JOINMOBCTIONOIN and JOINMOBCTIONNC. Note that
no action other than JOINMQOBCTIONNC hasbeenfully de ned.

4.6.1 Defjoin

Goate currently featuresasingle Join module, Defjoin. Defjoin provesthe joininc()
operation for HTML or XML nodes.

4.7 Language modules

Language modules in Goate work as describedin Meles. The primary role of the
modules is to declare Ido objects as describedin section x4.7.1. As in Meles the
Languagemodulesshould allow the recalculationof spansdasedon locators,although
this hasnot beenimplemented.

4.7.1 Declaing IDOs

Languagemodules havea single method, languageDeclare() , which takesasan ar-
gument a Context object. The Context object containsall of the information needed
by the method to declare Ido objects. Currently, the Context classcontainsa pointer
to the node (NodeP, the location of the node (Nodeloc), a pointer to the list of

31The pre x is JOINMOEather than JOIN asthesesymbolsare de ned in sysmod/joinmod.h , where
joinmod is aclassde ning the standardsfor Join modules.

4. GOATE 136

Ido objectsthat the method will declale objectsin (ldoltemListP) and the default
presentationstyles(ldoPres).

The application of default presentation stylesworks in the following way The
systemhasa setof default presentationstylesfor triggers®?, one for the links declaed
asbeing forwards links, one for backwads links and one for the multiple destination
triggers. Thesedefaultsinclude the colour to shadetriggers, the presentationstylefor
multiple destinationsetc.

The defaults are the application defaults overidden with settingsde ned in the
Goatecon guration les. Although not implemented,individual userpreferencesnay
affect the default presentationstylesaswell.

These presentation defaults are provided as part of the context provided to
languageDeclare() . The languageDeclare() method in a particular module may
or may not setthe presentationstylesfor the Ido objectsit declaes.If it does,it may
or may not basethis speci cation partly on the defaultsprovided. If the module does
not specifythe presentationstylethe applicationwill setthe presentationmembersto
the defaultsat a later stage.This meansthere are effectively three possibilities.Firstly,
the module may setits own standads for presentationregadlessof the defaults.
Secondly the module may setthe presentationstyle partly basedon the defaults,e.g.
keeping the colour speci cations but changing the multiple-destination style. Lastly,
the situation where the module doesnot setthe presentationstyle and Goate setsthe
styleto the defaults.

4.7.2 HTMLIink

The HTMLIink module interpretsembeddedlinksin HTML documentsand declaes
Ido objectsbasedon them.

The workings of HTMLIink are relatively simple. The XmIDocreferencedby the
NodePmember of the context is seached, and for eachtag where there is an href
attribute an Ido is addedto the list in the context. Note that any®** tag can be in-

32Ultimately there should be defaultsfor subjectand objects parts aswell.
331t may be argued that ignoring the defaultscompletelyis poor userinterfacedesign.
34With the exception of <area> which is usedto de ne image-maps.ldeally this tag should be

4. GOATE 137

terpreted asa link. The principle for this behaviour comesfrom the working draft of
XHTML 2.0 [8].

The module treats<a href> tagsdifferently to other tagswith ahref attribute. <a
href> tagsare considered to havea “purely linking purpose’, meaningthat once they
have been interpreted they can be removed from the document. Other tags which
happento feature ahref attribute are not removed,although the attribute is.

The XmIDocclassvhich modelsXML/HTML documentssupportts this behaviour
by allowing the itemsthat makeup adocumentto be agged in two ways.Firstly, each
item canbe shown asbeing a pure linking effect item. When this tag is set Goate will
removethe item from the document after all Languagemoduleshavebeenconsulted.
Secondly an item can be shown ashaving beeninterpreted, which is a hint to other
Languagemodulesnot to declae links basedon the item.

The two ags are independent. For example,an item may setasbeing interpreted
but not of being of pure linking effect, e.g. . Alternatively, an item may
be setasbeing of pure linking effect without being interpreted, e.g. a module which
recognisesan embeddedlink but is unableto processt itself.

4.7.3 GGamgle

GGoogle (Goate-Google) is alanguagemodule which allowsthe resultsfrom Google
seach requeststo be usedaslink destinations.For example,alink could be declared
with the seach terms “hypermediareseach”; the destinationsfor this link would be
the top n resultsfor that seach on Google at the time the pageis displayed.GGoogle
showsthat links to not needto be declared staticallyin a le but canbe generatedat
time of document delivery.

Link declarationsare embeddedinto the sourcedocumentin the form of agoogle
tag with the attribute of query listing the seach terms and the optional attribute
results detailing the number of resultsthat should be retrieved. The maximum
valuefor results is10 andthe defaultis5. An examplelink declarationmaylook like:
<google query="hypermedia research" results="10">Related work</google>.

interpreted and spanson the imagesshould be de ned.

4. GOATE 138

FIGURE 4.6: GGoogle in use

Figure 4.6 showsa pageusing Google to generatelinks on the y. Note that this ex-
ample makesuseof a nestedspeci cation. The outermost speci cation is a <google>
tag specifyingthreeresultson “hypermedia”, the inner speci cationisa<a href> tag
directly to http://www.sigweb.org . This exampledemonstrateshow speci cations
from multiple languagescanaffect acommon areaof the page.

GGoogle usesthe Google API [39] to interfacewith the Google seach engine.
Requestsare sentin SOAP [46], a XML basedlanguage,over HTTP. The datare-
turned by Google includes not only the link but also the title of the page and an
abstract.The title information is usedasthe trigger title.

The implementation of GGoogle is relativelysimple asthe supplied Goate HTTP
and XML routines canbe usedto processhe query. The source codeitselfis lessthan
700 linesincluding white spaceand comments.

4.7.4 GHURLE

The GHURLE Languagemodule [73][7] provideslinks de ned aspart of the WHURLE
adaptiveWeb leaming system.

WHURLE itself is written in XML/XSL T running on Cocoon [22]. Early at-
temptsto implement the linking behavioursof WHURLE directly in XSLT were not

4. GOATE 139

ideal; although it is waspossibleto implement links in this way, the performancewas
an issue.Providing the linking sewicesfor WHURLE using a Goate module solved
both the performanceissuesand provided an interesting real-world test for Goate.

4.7.4.1 Link and documentstructure

The basicunit of mediain WHURLE is the "chunk’. A chunk is a single unit of
information, but is not anode in the way this thesishasusedthe term sincea chunk
can consistof multiple media types, e.g. a picture and caption. The size of a chunk
dependson the infor mation being represented,a chunk should be the smallesiamount
of information which can stand-alone.In somesituationsthis may be a paragraphof
text, in othersit maybe anentire document sincein somecasesectionsof information
cannot sensiblybe removedfrom their suround context, e.g. legaldocuments.

Chunks are arrangedinto "pages'and pagesare arranged hierarchically asde ned
by the “lessonplan'. The hierarchical structure of the pagesis usedto form “auton-
avigation' links. Theselinks are createdwithin WHURLE and are not createdor in-
terpreted by GHURLE, indeedasfar asGHURLE is concemed theselinks are plain
HTML <a href> links.

GHURLE isconcemedwith the interpretation of links from the WHURLE linkbases.
The structure of theselinks was previously describedin section 2.4 and pictured in
gur e 2.1. In summary, WHURLE de nes three kinds of links: single, plural and
hub. Single links exist betweentwo points, plurals consistof multiple points where
eachend-point is accessibldrom eacheachend-point, i.e. the end-points are fully
connected. With a hub eachend-point is accessibldrom a hub point. All links in
WHURLE are bi-dir ectional.

4.7.4.2 Modelling links

End-points can either be a ‘mailto’ link to sendemail, an “extemal' link to an exter
nal WWW page, a pagewithin WHURLE or a chunk. Sincea chunk can appearin
multiple pages,alink to achunk may havemultiple destinations.

The basisfor the GHURLE approach to modelling WHURLE links is that all

4. GOATE 140

links ultimately declae one or more simple traversallinks®, and the processfocuses
on working out the link structure in terms of page-to-pagelinks.

The rst stageof processingis to readin and interpret the lessonplan in order
to discoverthe structure of the lessonin terms of which chunks appeartogether as
pages.andto calculatethe pagenumber in eachcase Pagesareidenti ed by apositive
integer which doesnot follow a simpleincrement. Ratherthe number is basedon the
number of opening tagsor processinginstructions in the lessonplan at the point the
page declaration is seen.For this reasonthe rst page number in a lessonis often
around 14.

The resultof processinghe lessonplan aretwo datastructuresnamedPageToChunk
and ChunkToPagePageToChunks keyed on page number and contains a list of
chunksfor that page.Each chunk hasa unique ID, which is alsousedasthe chunks
lename. Therefore, if page x is currently being consideled GHURLE can deter-
mine which chunks exist on that page. ChunkToPagerovidesthe reversemapping
of PageToChunKThat is, given a chunk ID it is possibleto detemmine a list of pages
where that chunk appears.

Thesetwo data-stucturestogether allow chunk-to-chunk linking. Firstly the page
currently being considered is extractedfor the Nodeloc object®®. Giventhis pagenum-
ber, alist of chunkson the pageis retrieved from PageToChunkNext, the linkbases
(x4.7.4.3) are consultedto seewhich chunks thesechunks link to. For eachchunk
linked to, ChunkToPages usedto form alist of pagedinked to. For eachpageanldo
object is declaed where the Nodeloc describesa URL to the WHURLE sewver with
the appropriate pagenumber asan attribute.

Page-to-pagdinks are simpler asthere is no requirementto consult PageToChunk
or ChunkToPageThe linkbasescanbe consultedfor destination pagesfor the current
page and the appropriate Ido objects declaed. Note that although the mechanism

35 mailto’ links are a slightly specialcasesincethe destinationis not reallya node location. However,
the Nodeloc classis capableof representing mailto links asa custom protocol. For the purposesof
GHURLE mailto links are treatedasa traversallink.

36The page number is usedto tell WHURLE which pageto display For example,the URL of a
WHURLE pagemight be http://someserver:8000/whurle?page=22 . GHURLE usesthe Nodeloc
provided aspart of the context suppliedto detemrmine which pagethe useris viewing.

4. GOATE 141

for page-to-pagelinks is well-understood and GHURLE is readyto implement this
link-type, page-to-pagelinks are not currently usedin WHURLE aspage-numbers
are consideredto be anun-reliableidenti er .

The simplestlink typesin terms of implementation are the extemal and mailto
typesasthesecanbe declaed asldo objectswithout eventhe needto reform asuitable
WHURLE sewer URL.

4.7.4.3 Linkbases

Linkbasesin WHURLE are de ned in XML and are read by GHURLE “on de-
mand'. Linkbasesare interpreted and stored in a data-stucture named Glinkbase .
A Glinkbase consistsof a number of Glink objects. Each Glink object hasa from'
and ‘to' part. The ‘from' part is either a pagenumber or a chunk ID whilst the “to'
part is any valid end-point. For example,a Glink object may capture that chunk x
links to chunky, or that pagea links to extemal b.

Each link structure declarationin a linkbase is broken down into a number of
Glink objects.For example,a simple' link betweenthe chunksx andy would create
two Glink objects, one keyedon x to y and one keyedon y to x. As the entire
linkbaseis processedmore Glink objects are added;in eachcasea checkis madeto
avoid duplicate entries.

When alinkbaseis queried asdescribedin sectionx4.7.4.2 the Glinkbase object
is simply seached for the appropriate “key', i.e. the page number or chunk ID of
interest.

Linkbasescan be speci ed in two locations. Firstly, a lessonplan may include a
referenceto alinkbasewhich should be consideed for all users.Secondly the URL
itself may specifyalinkbaseto usein addition to the one de ned in alessonplan using
the links argument. In either casethe linkbaseis processedvhen rst referenced.

In the secondcaseabove,the linkbasespeci ed will be interpreted the rst time
it is referenced and the details presewved for future requests.Note though that the
linkbasewill only be considered for other requestswith a matching links argument.
This facility allowseachuserto haveadistinct linkbaseaswell asthe lesson-wideone.

4. GOATE 142

FIGURE 4.7: A pagefrom WHURLE presentedwithout any Goate processing

4.7.4.4 Presentindinks

Triggers are positioned at the location of a tag in the HTML which contains the
attribute “class=linkbase”and use the "block' presentation style. Figure 4.7 shows
a WHURLE page without GHURLE enabled,and gur e 4.8 shows a page with
GHURLE enabled.

4.8 Environment modules

The Environment modules representthe system-to-envionment interface described
in Meles (x3.6.11). Goate has traditionally featured a single environment, that of
HTTP proxy. The work on Environment modulesis leading to a systemin keeping
with the principlesof Melesthat is not tied to any particular implementation environ-
ment.

However this processis very much a work-in-progressand as describedin sec-

4. GOATE 143

FIGURE 4.8: A pagefrom WHURLE viewedthrough Goate

4. GOATE 144

tion x4.1.3.2 the Broker in Goate still handlesthe receivingof requestsfrom clients
although this should be part of an Environment modules.

4.8.1 Webenv

Webenvis an Environment module for interfacingwith WWW browsers.With further
developmentthis module will contain all of the HTTP proxying code. Currently the
module merely addstriggersto HTML documents,with the sendingof the document
to the browsercaried out by the Broker.

One of the original aimsof Goate wasto support multiple WWW browsers,and
this is achievedby Webenvtailoring the changesit makesto the HTML document
accoming to the browserin use.Modern WWW browserssenta "useragent'string as
part of the HTTP requestheaderswhich identi es the browserand platform in use.
The useragentstring is passedo Webenvwhich is parsedand stored in a Useragent
object. This object is checkedby Webenvagainstknown agentsand one of anumber
of different ‘renderers'is chosen.

The renderers are implemented asmodules. Each renderer hasa method named
renderCanhandle() which acceptsa Useragent object. This method returns one
of three codes: SUCCESRENDERRROREFAULDNLYor RENDERRROROMATCH
SUCCESS8eansthat the module recognisesthe useragentand can produce HTML
particularly tailored for this browser ConverselyRENDERRRQRQMATCHhheansthat
the useragentis not recognisedand this renderer cannot produce HTML for the
browser The code RENDERRROREFAULDNLYs a "pattial successtode and states
that although the module cannot supplyHTML patrticularly tailored for this browser,
it doeshavea "default mode' which will probably be suitablefor this browser When
Webenvis attempting to nd arenderer for a given useragent,it will acceptthe rst
SUCCESS8turning module. If no module returns SUCCESKan the rst module which
provided a default mode will be used.

Once arenderer hasbeenchosen,an entry ismadein alist which associatean un-
parseduseragentstring with a pointer to arenderer module. This list avoidsrepeated
parsingof the useragentstring and querying of modules.

4. GOATE 145

FIGURE 4.9: Defren and Links

Currently Goate features three renderers. The most useful of theseis Modern
which supports Internet Explorer 5 or later, Mozilla 1.0 or later aswell as other
browsersbasedon the Mozilla renderer such asFirefox. These browsersall feature
suitably complete JavaScriptimplementations and CSS. The Modern renderer sup-
ports both pop-up and block rendering stylesfor multiple-destination triggers. Mod-
emn hasbeenusedfor the screenshotsthroughout this section.

The "Netscape4'renderer, asthe name suggests,supporns Netscapeversion 4
browsers.This module supports the samerange of behavioursas Modern although
some minor presentationdetails such asthe borders usedfor pop-up boxescannot
be duplicated. The implementations of JavaScriptare similar enough between In-
ternet Explorer and Mozilla that the Modern renderer can easilysupport both sets
of browsers;the implementation for Netscapeis sufciently different that a separate
module makessense.

Finally, ‘Defren’ providesonly a default renderer. This renderer makesno attempt
to styletriggersin anywayusing CSS.Additionally, multiple destinationlinks canonly
be presentedby sufxing secondor later options after the main link. A screenshotof

the pagepreviousshownin gur e 4.6 rendered in the Links Web browserby Defren
isshownin gur e 4.9.

4. GOATE 146

4.9 Optimisation

Optimisation of Goate in terms of speedhasnot beena major areaof work, and the
performanceof Goate hasbeenacceptablethroughout. However, somereseach has
beendone on how the the performanceof Goate could be improved.

4.9.1 Linkinsertioncaching

In [63] considerationwasgiven to different waysof cachingdatain systemssuchas
Goate. The normal cachingapproachfor a proxy is to cachethe original dataverba-
tim, howeverwith a proxy with altersthe content asit passeshrough, a number of
different approachesbecomeavailable.Note that [63] is a pre-Melesdiscussionand
considersimplementation solelyin terms of inseiting HTML-type links into existing
documents.

Sectionsof the conclusionfrom [63] are shown below:

“The initial recommendationis that sincede-serialisationis quicker than
parsingand occupiesa comparableamount of spacethere islittle point in
original pagecaching®’.

For systemswvhere the stability of links is expectedto be equal(or greater)
to the stability of the document (aswould be true for embeddedlinks),
there is alsolittle point in parseddocument caching®®. The recommenda-
tion would therefore be to use attened nal pagecaching® only, with a
combination of RAM and disc storage.

If the links are expectedto be lessstablethan the document, (i.e. the links
are applied from some extemal source), then there are two possibilities:
to cachethe nal pagein attened form or in structured form enabling
removal of [invalid] links. The choice betweenthesedependson imple-
mentation factors.

The attened form is more ef cient with spacethan the structured form
and so would allow more documentsto be cached.The structured form
would alsobe ef cient with spaceif using delta storage?® (perhapseven
more ef cient) but hasthe downsideof the costof applyingthe delta. This

370riginal pagecachingis the cachingof the node asretrieved.
38The storing of the document in an alreadyparsedform.

39A serialisedversionof the nal documentwith all links added.
40storing the differencesbetweenstagesof processing.

4. GOATE 147

isvery likely to be morethan the costto retrievea attened nal document
from RAM, although againstretrieving the attened nal documentfrom
disc, the better performing solution is not intuitive.”

4.9.2 Cachingwith a Melesappoach

As the future of Goate is to move towards Meles-compliancethe ideasdiscussedn
[63] do not directlyapply, although many of the principlescanbe transfered.

A simple cachingof raw node datais certainly still possibleand would likely lead
to some performanceimprovements. However [63] argued that a better approach
is to cachethe nal versionof the document assentto the browseror, in the case
of Meles, an arbitrary client. One issueof this approach is that the data sentto the
client may not be a single Nodeobject and the serialisationof the ,potentially nested,
object(s) may vary accoding to the Environment/client combination. For example,
a particular client may not understandnode type x and so the Environment module
convertsit to typey usingthe convert() method in aMedia module. In this casethe
serialisedideal’ object would not be relevant.

An altemativemaybeto build up alibrary of parsedandselect() eddata-stuctures.
Consider a paragraphfrom node i which is requestedvia a link and is inserted at the
top of adocument. This document alsofeaturesa number of electivelinks which af-
fectthe bottom of the document. Every time the userchoosesone of the electivelinks
the entire document will needto be reformed by the realiserand the paragraphat the
top of the document will needto be retrieved and processedafresh. If instead, the
paragraphcould be retrievedfrom a cachethe processingcostof the realisercould be
greatlyreduced.

4.10 Conclusion

A signi cant sectionof this chapterhasbeendevotedto highlighting shortcomingsin
the current versionof Goate in comparisonto the Meles model. However, it would
beincorrectto concludethat Goate haslittle reseach value.The two main reasondor
this are asfollows. Firstly, Goate hasprovided a useful developmentenvironment for

4. GOATE 148

ideasgeneratedthroughout this work, and at variouspoints throughout the reseach
period the applicationhasbeenaheadof the formalisedmodelling. In short, Melesand
the modelling in chapter 2 would not havebeen possiblewithout the development
work on Goate.

Secondly even the limited set of behaviourssupported by Goate are still use-
ful. Goate is usedin production asthe linking engine for WHURLE. Additionally,
GGoogle showshow novellinking speci cationscanbe implemented using the appli-
cation. With WHURLE and GGoogle there are examplesof languageausing extemal
and embeddedlinks.

4.10.1 Furtherwork

The main focus for further work on Goate will involve making Goate truly Meles-
compliant, asdiscussedhroughout this chaptet

Another possibleavenuefor developmentis a Goate-to-Goate communications
protocol that would allow link speci cationsto be processedby a 3rd party Goate
sewer. For example,a Goate sewer encountersand recognisesa link speci cation**
but cannotinterpret this speci cation, due either to lack of a suitableLanguagemod-
ule or to the sewer not having accesso arequired Source. However, the sewver may
be ableto sendthat query to another Goate sewer which can processthe speci ca-
tion andreturn asetof Ido objects. The issuewhich becomesimmediately appaent
is how a Goate sewver canrecognisea link speci cation without a Languagemodule,
and discoverother Goate sewers.Routing queriesto other instancesof a sewiceis a
technique alreadyusedin the DLS [32][33].

“This islink speci cation in the widestsenseof the term and mayinclude, for example wordswithin
text sectionswhich canbe linked to de nitions or relatedcontent.

149

CHAPTER 5

ATOMIC HYPERMEDIA

5.1 Intr oduction

This chapter introducesAtomic Hypermedia, a hypemedia approach that does not
involve the common concept of nodes. This work originated as a solution to the
problemsof multiple-node spansdiscussedn sectionx3.5.8.3.

One of the issueswith multiple node spansis that the two or more nodesrefer
enced may not have a connection betweenthem, and so it is indeterminate which
parts of the nodeswould be captured. A possiblesolution, titled "Continuous Hyper-
media’' aimedto solvethis problem by ensuringthat there wasalwayssomecommon
attribute between nodes so that comparisonscould alwaysbe made betweenthem.
Theseattributes would takethe form of "dimensions'. The proposalincluded the idea
that all content in the hypemmedia would exist assingle "atoms' which were placed
along a number of dimensions.

Although a more pragmaticapproachto multiple node spanswastaken for mod-
elling purposeqx3.6.13.2) the basicideasof Continuous Hypermediawere developed
into anapproachto hypemediathat doesnot include the conceptof nodes.

5.1.1 The problemsof node basedhypermedia

The concept of a node is useful sinceit allows operationsto be caried out on a
selectionof mediavia a single reference. However, such approachesend up dividing
content at an arbitrary level of detail. That is, a hypemediais considered to consist

5. ATOMIC HYPERMEDIA 150

of nodes;anything bigger than a node is a composite, and anything smallerbecomes
subject to within-node operations. As discussedthroughout this work, referencing
inside nodesis itself a signi cant area of reseach and no common way existsfor all
mediatypes.

Consider the following two caseslin the rst avideo is imported into a hyper
media and becomesa single node. In the seconda collection of imagesis imported
into the hypemedia, eachone becoming a single node. It is possiblefor both ap-
proachesto representthe samedata by applying someproperty of temporal ordering
to the images,so eachimage becomesone frame in the video. Whilst eachapproach
representsthe sameconcept, the method chosenaffectsthe way in which userscan
interact/work with the hypemedia.

Furthermore, node-basedhypemedia doesnot lend itself to data which is used
in severalcontexts. For example,an image may contain what is conceptually a dif-
ferent image. It may be desirableto have this subsetof the image accessibleas an
independent object' eventhough the content itself remainsshaed.

5.1.2 Solutionsummay

This chapterintroduces Atomic Hypermedia', the resultof reseach into an approach
which avoidsthe issuegust discussedAtomic Hypermediais basedon adatastructure
called Atomic Data Structure which encapsulatesnultiple items of media within a
single,uni ed structure. A hypemediano longer consistsof a number of nodes, but
of a single Atomic Data Structure. Atomic Data Structure consistsof a number of
atoms.

Atoms are the soleunit of content with the data-stuucture and representthe small-
estusefulunit of data, a single character Other data-typescan be representedwith a
number of atoms.

A universaladdressingschemes de ned basedaround the selectionand manipula-
tion of atoms. Sinceall content consistsof atoms,with this singleschemeit is possible
to work with any mediatype.

Additionally this removesany arbitrary node-levelboundaries. Sincein the data-

5. ATOMIC HYPERMEDIA 151

structure there is nothing smallerthan an atom, it is not necessay to considerhow to

referenceinside an atom.

5.2 Atomic Data Structure

This sectiondescribeghe axiomsof Atomic Data Structure (ADS). In summaly, these

are:
ADS consistsof atoms, eachholding a single characterascontent.
Eachatom existsin an arbitrary number of dimensions.
For eachdimension, the atom existsat one or more discrete location.
No two atomscanexistat the samelocation.

5.2.1 Atoms

An ADS consistsof a number of “atoms'. Each atom holds a single charactet as
content. This isthe only content holding datatype in ADS.

Although charactersare the only primitive datatype, other datacanbe represented
using multiple atoms. Some exampletypes are shown in gur e 5.1. For clarity the
atomsin this gur e havebeenplacedadjacentlysothat aleft-to-right readercaneasily
discen the semanticmeaning.In ADS thereisno privileged view of spatialadjacency
so the arrangementsshown here are no more natural than any other. The interpreta-
tion of ordering is left to the readerand is basedupon the properties exhibited by the
atoms. This topic is discussedn greaterdetail in sectionx5.2.2.

From typeslike these more elaborate media can be constructed. For example,a
colour is formed from integers representing RGB values,an image is formed from
colours, a video is formed from images,a Im is formed from videos, a festival is

formed from Ims.

1t is assumedUnicode, or equivalent, will be usedto allow the useof any charactervalid to the
user

5. ATOMIC HYPERMEDIA 152

(Hleltfifo] [31-]1]4f1]

String Real

[2I5T5] [2[4]3] [Te]

RGB Colour

FIGURE 5.1: Atomic representationof common types

Thesetypesare a userinvention; ADS doesnot "understand'any one of the data-
typesin the previouslist, none of them canbe considered a "basic'or "primitive’ data-
type. Sincenone of thesetypesare baseto the structure, none of them are privileged
and there is no extracostto analysingdataat any level. It is asnatural to selectdata
representingavideo asit isto selectthe integersmaking up a colour. It is asnatural
to selectan entire video asit isto selectthe rst framefrom evely Im in afestival.

5.2.2 Dimensions

The previoussectiondescribedhow the contentsof a collection of atom canrepresent
data. For this to work there must be a mechanismby which the respectivepositions
of atomscanbe de ned. This is achievedby placing the atomsalong dimensions.

A dimension is an ordering of valuesheld by a common attribute or property.
Objectsin the real-world havethe common properties of spatialposition, madeup of
three valuesde ning their position relativeto a common origin. They alsohavethe
common property of temporality describing their position relativeto a certain time
point. Objects changetheir positionsrelativelyfreelyin the three spatialdimensions,
and move at a constantrate in the dimension of time?2.

Atoms in ADS are placedalong dimensions.The dimensionschosenare arbitrary
from the point of view of the structure, but from a user'sperspectivemay be relevant
to what would traditionally be considesed the internal structure of the media, or the
placeof that mediawithin the whole ADS. Sincethe choiceof dimensionsisirrelevant
to the structure perse a detailed discussionis better suited to section5.3. However,
agrounding in theseissueds useful at this point to aid the understandingof the rest
of this section.

2At least,this is the common perception.

5. ATOMIC HYPERMEDIA 153

It is possibleto anticipate likely choicesfor the dimensionsthat will be assigned
to atomsbasedon their internal structure. For example,text is one dimensional(1D)
asit hasthe property of length only. Although text often existsin a two-dimensional
manner (such ason a computer screenor printed page)this is a presentationof the
data and not a property of the data itself. Throughout this paperx is used asthe
identi er for length, or width.

Imagesare two-dimensional (2D) and havethe properties of width and height, y.
3D models havethe additional property of depth, z. The identi er usedfor time is
time. The anticipateddimensionsfor somecommon typesare shown below:

Node type Dimensions
Text X

Image X Yy

3D model X Yy z
Video X 'y time
Animated 3D model | x y z time
Sound time

Sound is simply time since the wavefom representing sound is formed by the
successiorof valuesalong the time dimension. It may be considered that a sound
recording istime channel where channel is anumber of channels.For example,for
stereo sound there will be two positionsin the channel dimension. The assignment
of propertiesto dimensionsis discussedurther in sectionx5.3.

Theseexampleshaveignored the fact that at eachposition in the dimensionsmen-
tioned, the valuewill not be a single character which is the only atom content type,
but a userlevel de ned data-type such asinteger, colour etc. the representation of
which would add to the number of dimensionsinvolved. A complete sef of dimen-
sionsfor sometypesare shownin afollowing example.

It is not only acceptable,but an advantageof the approach, to be able to only
discussstructuresin terms of relevantdimensionsfor the current context and leave
the "depth’ of the structure implicit. For example,avideo could be consideredto exist
overtime andleaveimplicit that eachposition along that dimensionis animage.With

3In terms of internal structure.

5. ATOMIC HYPERMEDIA 154

[[[0 @ [

x=0 x=1 x=2 x=3 x=4

FIGURE 5.2: String with attributes labelled

1 [
x=4 x=2 E
oo~

FIGURE 5.3: String with attributes labelled

ADS you canwork with the level of detail that you needand no more.

An atom hasone or more properties*. Eachproperty consistsof two parts. Firstly
there is the nameof the dimension, known asthe dimensionalidentity’, which sewes
asalabel. Secondlythere is at leastone valuerepresentingwhere along that dimension
the atom exists,a dimensional "position’. Whilst the following examplesshow single
positions, the effectsof multiple positioning are discussedn sectionx5.2.4.

Identities can consistof lower-caseletters, numbersand the underscoe character
Identities must start with a lower-caseletter. The position is a positive or negative
integer. If an atom hasthe identity of x and the position 5 it hasthe property of
X =5

Figure 5.2 showsa simple string with properties shown. As previouslymentioned
the way theseatoms havebeen arranged spatiallyin this gur e is not important, it is
the propertieswhich de ne the relationship betweenatoms. It would be equallyvalid
to presentthe gur e asshownin 5.3.

Figure 5.4 showsasmall(1 2 pixel) imagewith propertiesshown. This example
usesthe dimension c to representa position within a RGB colour sothat c = Oisthe
red value,c = 1isthe greenand c = 2 is the blue. The n dimension is usedalong
the length of aninteger number. Note that for eachvaluethereisno xed number of
atomsalong the dimension, asthis dependson how many are needed.

Although the spatialarrangementis unimportant to the structure, arranging this

4This is not strictly true, seesectionx5.2.3.

5. ATOMIC HYPERMEDIA 155

IEE ORE O E R

x=0 x=0 x=0 x=0 x=0 x=0 x=0 x=0 x=0
y=0 y=0 y=0 y=0 y=0 y=0 y=0 y=0 y=0
c=0 c=0 c=0 c=1 c=1 c=1 c=2 c=2 c=2
n=0 n=1 n=2 n=0 n=1 n=2 n=0 n=1 n=2

[o] [4] [o] [2] [E] [
x=0 x=0 x=0 x=0 x=0 x=0
y=1 y=1 y=1 y=1 y=1 y=1
c=0 c=1 c=1 c=2 c=2 c=2
n=0 n=0 n=1 n=0 n=1 n=2

FIGURE 5.4: Image with attributes labelled

gur e asshownmakesit easiertto appreciatehow groupsof atomscould be selected It

canalsobe imagined how a stackof theseatomscould representa video and a group
of atomsselectednot only in two dimensionsbut with depth aswell. Of course,selec-
tions needn't be restricted by thesethree common dimensions,although the mental
visualisationbecomesincreasinglydif cult asfurther dimensionsare considesed.

There are no identities or positionsthat haveany specialmeaningwithin the struc-
ture. Theseexampleshaveusedx andy asthey will havea common meaningto the
reader The structure, however, doesnot apply this meaning. Substituting f rog and
toad for x andy would havenot changedthe behaviour of this ADS. It is up to the
userand applicationto interpret the semanticmeaning of identities.

The sameis true for the positions. These exampleshave used ascending,zero-
indexed integerswhich makesthe semanticmeaning clearto the reader It would be
equally valid, from a structural point of view, to store consecutivecharactersat the
position of the squae of the conceptualindex, i.e. 1, 4, 9, 16 etc.

Finally, so far the position assignedhashad someresemblanceo the relative po-
sition of this atom with the data-type. For example,for a string the atom at x = 1
is semanticallyadjacentto the atom at x = 2. This need not be the case,and the
positions assignedcan be chosenfor any purpose. An altemative use of positions is
discussedn sectionx5.3.3.

Properties of atoms can be adjusted freely Identities can be added or removed
from atomsalreadyin existenceand the positions for anidentity canbe altered. One

5. ATOMIC HYPERMEDIA 156

[2] [2]

x=0 x=0
y=0 y=0
z=0

FIGURE 5.5: Uniquely addressecatoms

[z [2]

x=0 x=0
y=0 y=0,1

FIGURE 5.6: Non-uniquely addressecatoms

restriction which appliesat all timesis that atomsmust be uniquely addressed.

5.2.3 Uniqueaddressing

Eachatom within an ADS must havean unique "address'.The addressis the setof the
atomsproperties. Therefore, for an addressto be unique, no other atom canhavethe
sameidentities and the samepositions for those identities. Uniquenessin either the
setof identities or the setof positions makesan addressunique.

The two atomsshownin gur e 5.5 are uniquely addressedsincethe atom on the
right doesnot haveaz dimension. However, the atomsin gur e 5.6 are not uniquely
addressedsincethereisaclashaty = 0 (x5.2.4).

Note that it is possibleto addressa single atom with the null address,that is the
addressconsisting of no properties. However, this is not considered to be usefulin
practice.

As datais addedto an ADS the problem of uniquenessis likely to arise.The rst
imageaddedto the hypemediais likely to be assued uniquenesssinceno other atoms
will haveboth x andy identities, and no others. As the secondimageis addedthere
will be aclash.

The solution to this problem is for the two imagesto be unique in some other
dimension, asdiscussedn sectionx5.3.3.

5. ATOMIC HYPERMEDIA 157

[[[[

x=0 x=1 x=2,3 x=4

FIGURE 5.7: Alternative “Hello” representation

5.2.4 Multiple positioning

As previouslymentioned, eachproperty of anatom canhold more than one position.
To phrasethis another way, an atom can exist at more than one location along a
dimension. Figure 5.7 showsan altemative representationof the word “Hello”.

The way to interpret this is to saythat the 3rd atom® existsboth at position 2
and position 3. Note that the valuesare discrete, soif anidentity had the associated
positionsof 1 and 5, the atom would not automaticallyexistat positions 2, 3 or 4.

Multiple positioning performs a key function within the datastructure asit allows
two distinct locationsto be “joined'. Sectionx5.3.6 showshow this is usedin Atomic
Hypermedia.

5.2.5 Memay usage

One issuewith the implementation of ADS isthe memory usageof the structure given
the high proportion of meta-data.This sectionexploresthe memory requirementsfor
a single atom and introduces a formula for calculating the worst casescenariofor
memory usageof an ADS structure.

Considerthe likely memory requirementsfor asingleatom. The atom itselfis likely
to be representedin Unicode. Let the amount of memory occupied by the memory
be representedby char size.

Each property of the atom consistsof an identity and one or more values.The
identity consistsof a number of charactersThesecharactersdo not needto be stored
in Unicode and soashorter, short_char_size, representationcanbe used.The average
length of anidenti er isrepresentedwith avg.id_Iength. Each position will be repre-
sentedasa signedinteger, the length of which will vary by implementation platform.

SThis is, of course,the third atom in this particular representation,not the third item asde ned by
the structure.

5. ATOMIC HYPERMEDIA 158

This length is representedby int _size.

The structure to allow multiple positionsneedsto be considered. A linked list may
be suitable for this purpose which will require a pointer in addition to eachvalue.
The size of the pointer will vary by implementation platform; this is representedby
pointer _size. The linked list will alsorequire an initial pointer to the rst structure
position _f ir st of sizepointer _size. The averagenumber of positions for eachidenti-
er isrepresentedwith avg_num _positions.

A linked list will alsobe neededto capture the list of properties presentfor the
atom. The rst item in the list is representedby propetty _f ir st. The averagenumber
of propertiesfor an atom is representedwith avg_num propertties.

The memory requirement for eachatom cantherefore be calculatedwith:

mem_property = (avg.id_length short_char_size)+
pointer _size+
(avg_.num _positions (int _size+ pointer _size))

mem_atom = char_sizet+
pointer _size+
(avg_propetrties (mem_property + pointer _size))

To evaluatehow ef ciently ADS stores data valuesneed to be assignedto the
symbols previously discussed.Some of these values,such asavg_num _positions are
bestdiscoverd from the evaluationof structuresin use.Sinceexperimentalevidence
is not availableon the use of ADS this value along with avg_num _positions and
avg_properties must be estimated. This exampleuseswhat is consideled to be high
estimatesfor thesevaluesin order to show the worst caseof ADS ef cency. It should
be noted that evenafter experimentaldatahasbeencollectedit is not expectedthere
will be a consistentsetof valuesfor thesesymbols,and thesevalueswill vary greatly
accoming to the databeing modelled and the architect of the structure.

For the other valuesa 32-bit basedarchitecture is assumedhencefour byte point-
ersand four byte integer values.16-bit Unicode is assumedor characterstorage.

In summaly:

5. ATOMIC HYPERMEDIA 159

Symbol Value
avg.id_length
avg_num_positions
avg_propetrties
char_size
int _size
short_char_size
pointer _size

=
-blﬂ-bl\)ol\)m

Thesevalueggive valuesof 19.6 bytesfor mem_property and 242 bytesfor mem_atom.

Given the mediamodelling methods previouslydiscusseda pixel in animage will
consistof up to 9 atoms. Presumean averageof 7 atoms. Therefore, the memory re-
quirementsfor a 1600x1200 (a typical high-resolution photograph) would be 3GB.
This valueis clearlyunacceptablefor any practicalpurposesand so a method of mem-
ory optimisation is needed.

5.2.6 Memay optimisation

The gur esin the lastsectiondiscussa scenariowhere evely detail regarding an atom
is stored explictly and independently An implementation of Atomic Hypermediacan
makesigni cant memory usagereductionsby exploiting the factthat alot of this data
is redundant.

For examplea piece of text is likely to havethe sameidentities throughout, and
constantpositionsin all but the x dimension. This fact canbe usedto store datamore
ef ciently within the application. An object type would store two lists. The rst isa
setof propertieswhich are unchangingthrough the object, this is the sameformula as
for mem_property above.The secondlist containsidentities which do changewithin
the object:

mem_id_changng = changng f ir st+
(num_changng_ids
((avg.id_length short_char_size)+
pointer _size))

If the example image has four positions that change, and six that do not
mem_id_changng can be calculatedas being 44 bytes. The size of the encapsulat-

5. ATOMIC HYPERMEDIA 160

ing object — ignoring the atomscontained— is therefore:

mem_object= mem.id_changng + pointer size+ (6 mem_property)

Which evaluatedo 165.6 bytes giventhe current assumptions.

The atoms themselvescan be stored asa linked list, with eachobject in the list
being the contentsof the atom and alinked list of values.The total memory usagefor
agroup of atomswith this method is therefore:

mem_oneatom= char_sizet+
atom_next+
pointer _size+
(num_changng_ids (int _size+ pointer _size))

mem_atoms = mem_object+
atom_f ir st+
(num_atoms mem_oneatom)

For the exampleimagemem_oneatomis 42 bytesand mem_atoms is 77MB which
isonly 2.5%of the original 3GB.

This approach is still far from optimal in that there is predictable data which is
being explictly stored. Namely, the positionswithin animageincrementin predictable
ways.A better approachwould exploit this factto reducethe number of positionsthat
haveto be stored.

Note that whateveroptimisation is done to store datawithin the application, the
ADS should behaveasin the original approachwhere evely atom had anindependent
set of data. It should not be possibleto tell from a userlevel point-of-view if the
datais stored in acompressedorm within the applicationor not, and the application
must ensute that storagestructuresencapsulatingsectionsof the ADS are manipulated
completelytranspaently to the user

6The fractional part is aresult of the 1.2 averagenumber of positions for an identity. Obviously, in
reality the valuewould be a higher or lower integer value.

5. ATOMIC HYPERMEDIA 161

5.3 Atomic Hyper media

Section x5.2 discussedthe structure and rules for ADS. This section discussesap-
proachesfor using ADS aspart of a hypermediaapproachnamed Atomic Hyperme-
dia'.

ADS is sufciently powerful that only a single new ability needsto be addedin
order to facilitate its useasa basisof a hypemedia system.This is the ability to refer
to content by reference, rather than copying content verbatim between areasof the
datastructure. This distinction is discussedn more detail in the following sections.

5.3.1 Layout

Atomic Hypermedia allows hypemedia operations without boundaries by working
directly with the properties of content, not an arbitrary container class.To maximise
the bene ts of the approachit is very important that the “layout' of the hypemediais
clearlyde ned.

The term “layout' refersto the wayin which content is structured within the hyper
mediain terms of the identities usedto expressconcepts.The planning of the layout
is the task of the hypemedia architect. Whilst many authors may contribute content
to a single hypemedia, it is the architect who decideshow that content should be
representedin ADS. For example,the architect may specifythat atomsrepresentinga

book should havethe identities of chapter, sentenceand x.

5.3.2 Incaporation

Bringing items of mediainto an Atomic Hypermediais known asincorporation. The
hypemedia application will make an interface available,with supporting program-
ming libraries, with which extemal programs can manipulate the hypemedia. Inter-
facingis discussedurther in sectionx5.3.7.

An incorporation tool usesthe availableinterfaceto import new mediaitemsinto
the hypemedia. There may in fact be more than one tool used, asindividual tools
may understandonly alimited setof media. Theselimitations maybe to generictypes

5. ATOMIC HYPERMEDIA 162

suchastext or imagesor to particular le formats.

The tool will createatomsin appropriate dimensions.Firstly, the tool must assign
dimensionsto the internal properties of the media, e.g. the pixelsin animageexisting
in the x and y dimensions. Secondly there may be a need to specifyother dimen-
sionsasthe structure of the overall hypemedia demands,e.g. index dimensionsas
discussedn the following section, or other semanticindicators. Work is ongoing re-
garding a speci cation method by which an architect canin uence the behaviour of
incorporation tools so asto meetthe speci cation for the hypemedia.

5.3.3 Indices

For any non-trivial hypemedia it is impractical to use an addressingschemebased
purely on the structure of the original media. Equally, whilst extradimensionsmaybe
usedto provide structure betweenatoms, i.e. dimensionswhich did not existin the
original media, this is alsoinadequate.Consider a library of imagesincorporated into
a hypemedia, some of which will be usedaspar of a composedvirtual document
within the ADS.

The identities relating to the structure of the document will probably not be as-
signed until the imagesare placedwithin the document. Until this takesplace ad-
dressewvill only haveidentities relating to structure of the original media, and hence
the addressewvill be non-unique.

A solution is to usean identity which holds a uniquely identifying value. For ex-
ample, for imagesthe identity may be image. The position used with this identity
would increaseby one evely time animageisincorporated. Identities usedin this way
are called ‘index identities'. Note that index identities behaveidentically asnon-index
identities regaiding the rulesof ADS.

Uniquely identifying eachpieceof incorporated mediamay seema cheat,sincethis
essentiallylabelsa "node' with a ‘'node ID'. However, there are severalreasonswhy
this is not the case Firstly, Atomic Hypermediadoesnot seekto removethe concept
of semanticgrouping, in factit seekgo expandthis conceptby allowing groupingsto
be appliedto arbitrary atoms. Secondly intr oducing this grouping hasnot raisedany

5. ATOMIC HYPERMEDIA 163

D image=id1
B image=id1, id2

FIGURE 5.8: Multi-located ID values

barriersto the structure of the "node’, a useris still equally capableof examiningand
working with the content asthey were before.

Consider a hypemedia where incorporated imageshave a image index identity.
Figure 5.8 showsa collection of atoms which have been incorporated from an im-
ag€. When incorporated the atoms were assignedhe property image = 0. After in-
corporation, a subsetof those atomswere selectedand multi-located along the image
dimension and additionally given the the property of image = 1. A singleimage le
hasgivenriseto multiple imageswithin the hypemedia. This is an exampleof where
there is not a 1:1 relationship between the original le and the unique identi ers
assigned.

In asimilar vein atoms could be selectedthat were incorporated from avideo and
give them the identity of image. Theseatomswould then, presumably haveat least
the identities of x, y, time, video and image.

5.3.4 Linking

The ability to link items together separatefiypemedia systemdrom plain data stor-

age.A link isanexpressedelationshipbetweentwo objects.Generally anykind of re-

lationship canbe expressedy the link, although an applicationmaylimit the possible
relationships.Suchrelationshipscould include “is parent of” — genealogyhypeme-
dia— or “mor e detail” — teachinghypemedia. By following theselinks the reader's
view of the hypemediachanges.

"For clarity this ignoresthe fact that eachpixel in the imageis in fact madeup of multiple atoms

5. ATOMIC HYPERMEDIA 164

Atomic Hypermedia supports two varietiesof linking. Firstly, content can be ar-
ranged at positions along dimensions signifying a ‘more’ or “less'relationship. An
exampleincludes arranging content by a level of detail asshown in section x5.3.5.
Secondly redirection (x5.3.6) canbe usedto join distinct areasof ADS.

5.3.5 Sub-structures

An Atomic Hypermediaconsistsof a single ADS object which storesall data. Within
this ADS objectit canbe consideled that there existanumber of sub-structures,where
a sub-structure is an arbitrary selectionof the ADS object. It doesnot matter to the
de nition whether there is a path betweenthe atoms of the sub-stucture® or if the
sub-structuresare completely disconnected.The term sub-structure is usedonly asa
discussiontool when highlighting that two areasof the ADS object are conceptually
distinct in someway.

If it is assumedthat a sub-structure representssome grouping of content in the
hypemedia, links canbe representedby placing altemative content along new dimen-
sions.

For example,considerthe relationship of “mor e detail” and a section of text de-
scribingthe HTTP protocol. The sectionof text would haveat leastthe identity of x
but would likely haveother identities placing it within alarger structure. This exam-
ple ignorestheseother identities. To expressthe relationship of “mor e detail” these
atoms are altered so they additionally havethe identity of detail. So, for example,at
(detail = 0) the text would be “HTTP isacommunicationsprotocol.” at (detail = 1)
the text would be “HTTP is a transfer protocol used primarily on the WWW' and
at (detail = 2) the text would be “HTTP , now at version1.1, is a transfer protocol
primarily usedon the WWW although other applicationshavebeenfound.”

Note that at higher valuesof detail other identities could havebeenaddedto the
atoms, suchassection. Within a sub-structure there is no requirement that all atoms

8For there to be a direct path betweentwo atoms, the atoms must have a common identity. An
indirect path requiresthat an atom can be reachedfrom another atom by following multiple direct
paths,e.g.there maybe no direct path betweena and ¢ but anindirect path mayexistsuchasa! b!
C.

5. ATOMIC HYPERMEDIA 165

havethe samesetof identities.

There are disadvantage$o usingthe previousapproachthroughout a hypemedia.
Consideranimagewhere eachpixel is labelledwith the nameof the persondepicted.
Normally the text would be placedalong x, however this is not possiblesincex is
alreadyin use.Additionally this problem cannotbe solvedby adding ameta dimension
where meta = 0 is the imageand meta = 1 is the meta-data,sinceevenat meta= 1
there would still be the original valuesfor x andy. Instead an identity other than x
would haveto be usedto placethe text along, e.g. name.

The rst problem of this approachis that the useof non-standad identities would
makeit harder to seach the hypemedia. Secondly the nameof eachpersonhasbeen
added by value'. This meansthat if aperson'snamechangesall instancef that name
throughout a hypemedia must be updated. A better approach would be to store a
name "by reference’. This is similar in conceptto the normalisation of databasego
reduceredundancy

5.3.6 Redirection

Atomic Hypermedia allows redirection, which usesan identity of an atom — the
‘subjectidentity’ — to referto an identity in another atom — the “object identity'.
In many casegshe object identity would be an index identity, but this not true by
de nition. The position assignedo the subjectidentity refersto the sameposition for
the object identity.

Subjectidentities alwaysend with the text _id. The total form of the identity is
either xxx _id or yyy xxx _id. xxx is the object identity and yyy is a “local name' for
the identity. Local namescan be usedfreely but are required when for a particular
atom two separatereferencesare made to a single object identity. For example,an
atom may havethe subjectidentities f ir st_name_id and last_name_id. This is shown
in usein sectionx5.3.6.1.

Considerthe following example.In ahypemediathereis a sub-structure of names
which hasthe dimensionsname x. The rst namein this record is “Mar garet” so
that (name = 0;x = 0) holds 'M', (name = 0;x = 5) holds 'r' etc. The secondname

5. ATOMIC HYPERMEDIA 166

FIGURE 5.9: Image with regionshighlighted

is“James”, (name = 1;0 x 4). Now considerthe picture shownin gur e 5.9.
For the atomswithin the areaA the property (name.id = 0) is assignedand for the
areawithin B (name.id = 1) is assignedlIf there were any atoms appearingin both
areasthe property (name.id = 0; 1) would be assignedusing multiple positioning.

This approach allows the application to deducethat for certain atomsthere is a
link to other content within the hypemedia®. Within this hypemediait is possible
to seach for a particular name, and having found the appropriate position along the
name dimension, seach for atomsthat exist at, for example,(name.d = 1) to de-
termine which atoms havea link to this name'°. It is also possibleto locate images
that feature a particular person,or evenreferenceonly the atomswithin imageswhich
depict that person.

The datareferedto doesnot needto betwo dimensional.For example,if aperson
changegheir namethe atomsat a particular position of name could be madedeepin
arevision dimension. Theseatomscould alsohaveayear_id identity which refersto
ayear n sub-stuucture listing years.

In this exampleanamehasbeenassignedo animageasaform of meta-data.Note
that in Atomic Hypermediawhat auserwould considermeta-datais not adistinct type
from other content and therefore meta-datacantake anyform. A sub-structure could
be referencedwhere the content at an index position is animage, video or sound.

9Sectionx6.9.2 discusses function speci cation which allowsthe opposite operation, that is given
an atom the function nds which atomspoint to it.
0An exampleimplementation of this is shownin sectionx6.9.3.

5. ATOMIC HYPERMEDIA 167

5.3.6.1 Furtherredirection

This example discussesa hypemedia storing details about a family. This example
makesextensiveuseof linking to sub-structuresusing redirection.

Eachpersonin this hypemediais identi ed by a position along a person dimen-
sion and is describedby severakttributes. To allow for changes,and to minimise the
amount of redundancyin the datastructure all of the descriptiveattributes are stored
in separatesub-stiucturesand therefore can be re-usedthroughout the hypemedia.
For example,in this hypemediathere is a sub-stiucture storing names.A section of
this record is shown below:

name | x !
0 John
1 Smith
2 Fred
3 Bloggs
4 Betty

So a particular personmay havethe properties of (person = 0;f ir st_ name.id =
0;last_name.id = 1). Note that the personis describednot by the contents of atoms
which havea person identity but by the addresse®f theseatoms. Only a single atom
is required for this description and the content of the atom isirrelevant.

Changesto a person's details can be shown by changing the properties of the
atoms. Consider alsoayearsub-stucture:

year | n!
0 |1977
1 |1980
2 | 1978
3 1995
4 | 1987

Sincethe year indicesdo not signify anything in particular, thereisno requirement
for the yearsrepresentedto be in anyparticular order. Rather, the entriesin this record

5. ATOMIC HYPERMEDIA 168

were createdasneeded.

When a personis referenced, by selecting(person = 2), for examplethere may
be a number of atoms captured. It is likely only a single state would be required
so one of these candidate atoms would be selectedaccoding to one of the other
properties, suchasthe atom where the year_id eld referencesthe highestnumber of
all candidates.Seesectionx6.9.5 for an implementation of a function to Iter in this
manner.

If, asin the previousexample,it wasdesired to show where in imagesa person
appearghe identity addedwould be person.id and not any particular name.

It is alsopossibleto categoriseimagesaccoding to the eventsthey depict. Con-
siderthat evelry image addedhasaimage index identity. A record of eventscould be
de ned asbelow:

event | eventdescid | image.id
0 0 0,14
1 2 2,6

eventdesc X!
0 A lovely picnic
1 Bob's wedding
2 Christmas

Of course,the atoms making up the eventdescrecord could be deepin a dimen-
sion suchasdetail and neednot be text, but canbe any mediatype. Equally the event
record could be deepin year_id sothat for arecuring eventsuchasChristmasa sin-
gle event position describeghe whole group yet the imagesfor individual yearscould
still be separated.

Now consider some of the queriesthat can be caried out on this data. For ex-
ample, selectingall of the atomswhere (image_id = 2) to discoverall of the contexts
where a particular picture isused.lt is possibleto detemine the context of the useby
the other identities presentfor theseatoms. For example,if the atomshavean event
identity it is known the picture describesa particular event, whilst the presenceof a

1t might be assumedhat similar records would existfor month and day.

5. ATOMIC HYPERMEDIA 169

person identity showsthe image is being used asthe main descriptiveimage for a
particular person?.

5.3.7 Interfacing

It hasbeen mentioned previously how an extemal application may need to access
an Atomic Hypermedia. This section considerswhat operations must be supported
to allow this. There are arguably many high-level conceptsthat could be considered
and argued for, and one proposalis introduced in chapter 6. Additionally there are
middle-layer operations which would provide a more useful and ef cient interface
method. However, this sectionis only concemed with the core abilities that the hy-
permedia application must provide to provide a complete interfacewhich other lan-
guages/apprachescanbuild upon. Thesecore abilities are simply the setof low-level
operationspossibleon ADS, and dealwith editing the properties or querying atoms.

The interfacemust support the creation and the deletion of atomswith aparticular
address.It must be possibleto query whether an atom existsat a particular address,
and if so,to return the content stored. It must alsobe possibleto changethe content
of an atom.

The applicationshould alsoreturn alist of referencesto atoms, or the addresse®f
atoms basedon a suppliedlist of dimension identities. A referenceis a pointer to an
atom, independentof its current address.The routine should return referencesto all
atomswhich haveat leastthoseidentities. If no identities are suppliedthen references
to all atomsin the hypemediaare returned.

It should also be possibleto manipulate properties. Identities should be able to
be created,deleted or modi ed. It should alsobe possibleto changepositions for an
identity. Furthermore, it should be possibleto retrievea list of identities for an atom
basedon the atom's referenceand the position for a particular identity.

12t least,a personin somecontext. For example,different imagesmay be usedalong the year _id
dimension for a particular personsignifying someone'schanging appearance.

5. ATOMIC HYPERMEDIA 170

5.4 ZigZag

Of all existing hypemedia approaches,Atomic Hypermedia shaesthe mostin com-
mon with ZigZag [77][67][70] by Ted Nelson.

5.4.1 zzStructure

ZigZag is basedon a data structure called zzStructure. The relationshipis similar to
how Atomic Hypermediais basedon ADS although the abilitiesaddedby the higher-
level conceptdiffer.

zzStructure consistsof “cells’ which existin a number of dimensions. For each
dimension a cell hastwo connections: poswads' and ‘negwads'. The poswad con-
nection of acellis joined to anegward connection of another cell. It isvalid to create
aloop of cells(a wheel) and for acellto be connectedsolelyto itself.

All cellsin the zzStructure existin all dimensionsalthough there is no requirement
for a cell to be connectedto any others for any given dimension. Dimension names
are pre xed with d:, e.g.d:name, d:x etc.

Unlike ADS there is no concept of a numeric position along a dimension. It is
possibleto emulate this by eachcell of content being joined to another cell along
an arbitrary dimensionswhich provide meta-data. So eachcell could, for example,
havead:property dimensionalong which eachidentity is named. From eachof these
cellsanother cell could be connection along d:position which contains the numeric
position.

However, note that this approach duplicatesthe dimensionidentity. Eachidentity

rst appeardn the structure itself and it alsoappearsasthe contents of the cell along
d:propetty. In fact, there is no reasonwhy the dimensionnamedalong d:property has
to be the same,or bearanyrelation to the identity in the structure. A virtual structure
basedon d:property and d:position can be built which shaes nothing in common
with the zzStructure.

In zzStructure cellscontain arbitrary data, e.g. a piece of text, an image etc. Cell
containsare discussedurther in sectionx5.4.2.1.

5. ATOMIC HYPERMEDIA 171

[F] o, [6]_ex [7]_ax [1] _dx, [o]

FIGURE 5.10: “Hello” representedwith cloning

5.4.2 ZigZag

ZigZag takeszzStructure and addsthe ability of cloning. Cloning a cell in ZigZag
createsa new cell where the contents of the two cellsare linked so that a changein
one cell's content is re ected in all cells®. Cloned cellsare connectedalong d:clone.
Aside from the d:clone dimension all dimensionsin a clone are independent of the
original cell. Figure 5.10 showsa representationof the word “Hello” using cloning.
Note that any amount of text can be createdusing a single copy of eachletter, with
eachoccurrencebeing a clone. It would be possible,for example,to statt from any
occurrenceand navigatealong d:cloneto nd other occurrencesof that letter in con-
text. Using a single-letter per cell is just one usefor ZigZag, eachcell could instead
hold a name and by navigating along d:clone other placescan be found where that
nameis referenced.

The use of cloning above seemssimilar to use of multiple positions as shown
in gur e 5.7, howeverthere are signi cant differenceswhich become obvious when
multiple positioning is usedfor more than one dimension simultaneously Consider
the four pixel imageshownin gur e 5.11 which featuresa simpli ed view of Atomic
Hypermediawhere a pixel is a primitive type. Two of the pixelsare red, one is green
andoneisblue. With cloning there could be asinglered pixel which is clonedto other
locations. However, trying to specifythis behaviour using multiple positioning with
(x = (0;1);y = (0;1)) isincorrect sincethis captures(0;0), (0;1), (1;0) and (1; 1).
The correct emulation of cloning is to useredirection and in this casethere would
be a sub-structure of colours and the properties for the top-left atom would be (x =
0;y = 0;colid = 0) andthe bottom right atom would have(x = 1;y = 1;colid = 0).

It ispossibleto comecloserto the ZigZag cloning method by changingthe wayin
which multiple positionsare speci edin ADS. This new method would allow multiple

13Somereadersmay preferto think of asingle cell which existsin many places

5. ATOMIC HYPERMEDIA 172

=}
W] o
ke [2) B

FIGURE 5.11: Examplefour pixel image

[E]

x=0

FIGURE 5.12: Alternative addressingmethod

setsof properties which are independentsuchasin gur e 5.12. There are arguments
againstthis change.Firstly, the ‘commastyle' method is a useful method asit allows
the userto specifyacommon setof properties. With the altemative method common
identities suchasimage would haveto existin eachaddressset, creating redundancy
Both methods could be in usesimultaneouslybut this would increasethe complexity
of the speci cation.

Secondly there would still be the issueof reusingcommon dimensionsin different
contexts discussedin section x5.3.5. Consider the logical extension of the cloning
approach where there is only a single instanceof eachcharacterwhich is cloned in
evely caseit is neededand the task of labelling a pixel with some text. Even with
multiple setsof properties for eachcharacterthere is still a problem sincewithin a
property setthe x identity will be usedmultiple times, i.e. for the position within the

image and for the position along the text string.

5.4.2.1 Cell contents

Whilst the content of an atom in Atomic Hypermediais strictly limited to a single
character ZigZag doesnot de ne the granularity of content. This makesAtomic Hy-
permedia slightly more predictable than ZigZag. However, both typesof structure
are largely de ned by the choice of dimensionsand so for either structure to be pre-
dictable a standad for dimensionsneedsto be de ned. Atomic Hypermediahasthe
additional requirement of needingto de ne how mediatypesare representedwhilst

ZigZag needsto de ne formal types.

5. ATOMIC HYPERMEDIA 173

ZigZag does not include a method for addressingdata within a cell, although
this is under discussionnothing hasbeenformalised. There is an argument that cells
should be atomic in that they are the smallestunit of data and should not be part-
referenced. The logical extensionof this principle would meanthat eachcell would
contain asinglecharactern the samewayasADS. Of course,an architect of aZigZag
hypemedia may decide that the characterlevelis unnecessay for imagesand make
the atom type for imagesa pixel. This is possiblesince,unlike ADS, zzStructure allows
more than a single content type. The trade off for this exibility is complexity. Appli-
cationsthat work with ADS canbe assued that only characterseedto be processed,

for ZigZag applicationsthe requirementis lessstrictly delimited.

5.5 Conclusion

This chapter introduced Atomic Data Structure and shown how this can be used
asa basisfor Atomic Hypermedia. This approachto modelling hasadvantagesover

traditional node-basedstructures:

Only asingle primitive data-typethroughout the whole data structure which is
capableof representingany other datatype.

Single addressingmechanismfor data at any level of complexity from compo-

nentsof typesto whole documents.

Content canbe arrangedalong arbitrary dimensionsto expressvariousrelation-

ships.

5.5.1 Furtherwork

There are many possibilitiesfor further work in this area.Primarily an Atomic Hyper-
media systemshould be implemented to better explore the issuegaised,allow quan-
titive measuementsof performanceand to examinehow userswork with an Atomic
Hypermediain practice. Additionally, work canbe caried out on the a speci cation
languageto standadiseincorporation of mediatypes(x5.3.2).

174

CHAPTER 6

HEDGEHOG

6.1 Overview

Sectionx5.3.7 discussedhe requirementsto allow a programming languageto ma-
nipulate Atomic Data Structure. In this section an exampleprogramming language,
"Hedgehog', is introduced. Hedgehog is not intended to be only programmatic way
of manipulating ADS, and is only one exampleof this type.

The principle behind Hedgehog is that manipulation of atomsis the fundamental
operation to be performed on ADS. The languageshould therefore emphasisehese
operations.Whilst it is possibleto createinterfacesfor any of the operationsdescribed
in this section in a procedural or object-oriented languagethe resulting programs
would be relativelyclumsy For example,forcing value context (x6.4.5) for reference
(x6.2.1) x canbe achievedin Hedgehog with a simple underline — x — whilst in a
procedurallanguagea function call would be needed— toValue (x).

Furthermore, the languagewasto emphasighe paradigmof a ow of information
being affected by a number of operations.

6.1.1 Relatedwork

Whilst asthe rst languagedesignedfor the manipulation of Atomic Hypermedia,
Hedgehog is by de nition novel, its designis in uenced by a number of existing
languages.

The ow of referencesbetween functional blocks (x6.3.2) is reminiscent of the

6. HEDGEHOG 175

piping abilities of UNIX shells. The synchionisation of inputs describedin section
x6.3.2 wasinspired by Prograph [13].

The useof recursionto provide alooping construct is possiblein many program-
ming languagesbut is perhapsmore typical of functional languagessuch asHaskell
[55] or Lisp.

The notation usedfor lists (x6.2.2) is similar to that of [12]. Although unlike the
descriptionsin [12], Hedgehog lists canconsistof multiple types— strings, numbers,
etc. — sinceany content in Hedgehog representedby atoms(x6.2.3), this restriction
is essentiallypresered. Additionally the + operator is takenfrom [12].

6.2 Data types

Hedgehog hastwo primary datatypes:lists and scalars.

6.2.1 Scala types

Conceptually scalarsare single valuessuch as an integer, real number, characteror
pointer. In Hedgehog there are only two scalartypes;charactersand atom references.

A characteris a single Unicode charactercomplementing the type of atom con-
tents. Charactersare used to build up more useful virtual data-typesas discussed
in section x6.2.3. Characterswithin a Hedgehog program are surrounded by single
quotes,e.g. X .

An atom reference — or simply ‘reference' — is a pointer to a particular atom
independent of the atoms addressin ADS. Referencescannot be representedin text
form in the samewaythat the valueof apointer in C or areferencein Javacannot be
sensiblywritten down.

6.2.2 Lists

Lists are broadly equivalentto arraysin other programming languagesEachentry in
a list is a scalay list or variable. Lists are surounded by squae bracketsand entries
separatedoy a comma. There are two typesof list which vary by the classof scalars

6. HEDGEHOG 176

that canbe usedasentries. Lists which contain charactersare called "valuelists' whilst
lists containing referencesare ‘referencelists'.

Lists can contain any statementtype (x6.3.1) which includesother lists and vari-
ables.No matter how deepa list becomesthe resultantscalaramust be of the appro-
priate type.

The following is an examplevaluelist. This exampleincludesnestedlists and vari-

ableswhich are describedin sectionx6.2.6:

[H;i X[y ;Y]

Hedgehog is list-centric and scalarscanbe treatedassingle elementlists.

6.2.3 Virtual data-types

Although charactersare the only value-type scalarwhich exist natively Hedgehog
de nes strings, integersand realswhich existby convention.

The convention for strings is simply that a string is a list of characters, such as
[H;e ;| ;1 ;o] Sincethisiscumbersometo write double-quotescanbe used
to symbolisethe samething, e.g. "Hello ".

The convention for numeric valuesis essentiallythe same,the numbersand sym-
bols which make up a gur e are placedin a list. An approximation of would be
[3 ; :;1 ; 4]. Again,thisiscumbersometo useand sothe syntaxof Hedgehog
allowsnumbersto be written directly, e.g. 3:14.

This raisesthe question of how 3:14 is different to "3:14" since when written
long-hand in list form the lists appearidentical. The answeris simply that there is no
differencebetweenthe quoted and unquoted version.

Hedgehog, like Perl[83], islooselytyped. Numbers canbe usedasstringswithout
any type-castingor conversion.For example,it is valid to perform a string concate-
nation between 3:14 and "Hello ", which would give the result "3:14Hello". Note
that the answerin this caserequires quotes sinceit contains charactersthat are not

IThis is similar to the C approachexceptwith Unicode and without the ending null character

6. HEDGEHOG 177

allowed unquoted. If the operandswere 3:14 and 17 the answercould equally have
beenwritten as3:1417or "3:1417".

Equally a string canbe usedasa number. If the string happensto contain a valid
number sequencethen that sequenceis taken asthe value. Empty strings or strings
containing only white spacehavethe valueO and all other stringsthe valuel. There-
fore" Browr + "Cow givesthe answer2.

6.2.4 Valuelistsin use

Sincelists can contain other lists they cantherefore consistof virtual data-types,such
as["Hello ";"World"; 3:14] which is of course,equivalentto:

[H;e ;I 51 ;0 L[W;0;r ;1 5d L35 :51 ;41

Thereisaconvention for the standad Hedgehog operatorsthat the outermost list
is usedto separatemultiple valueswith a secondlevel list being usedfor data-types.
Therefore[H; e ;|1 ;| ; o]isalistof ve charactersvhilst[[H ;e ; | ;1 ;0]
is alist of one string.

Note that for the rst examplewith ascalarasthe entry in the outer list, the oper-
atorswill treatthis asastring with asingleentry, e.g.:[[H J;[e ;[| L;[!][0]

Now considerif the list had an additional nesting, suchas:

MMH;e ;1 ;1 ;0 LK[W;0 51 ;1 ; dll

Firstly, it isusefulto usethe quoted notation to simplify the appearancef this list,
giving:
[["Hello ";"World "]

In the casewhere the operator, when expectingasinglelist of charactersgncoun-
ters a nestedlist the contents of the inner lists would be attened in position, the
equivalentof:

["Helloworld "]

6. HEDGEHOG 178

0 A
1884,

FIGURE 6.1: Atom ReferenceChain

Note that the conventions just describedare only conventions for the standad
Hedgehog operators.A usercande ne functions which processdatain anyway they
wish.

6.2.5 Referencdists

Sincereferencescannot be representedin text form neither can referencelists. Ref-
erencelists can, however, be passedaround a Hedgehog program. Whilst the term
‘referencetype list' is accuratefrom animplementation point of view, lists of this type
behavein two distinct waysdepending on the context in which they are used. The
two forms of referencelists are known as collections' and "chains'.

A chainis alist of referencesthat are considered to be in sequenceand behavesn
the sameway asan ordinary list. When usedin a scalarcontext (x6.4.1) anindividual
reference hasthe value of the content of the atom it references.Figure 6.1 showsa
representationof a chain which would be treated asthe value 1994 when in value
context.

A collection is similarto setin traditional mathematics;the referencesare not con-
sidered to be in any particular order and there are no duplicate references.When a
chain is usedin collection context the ordering in the chain is consideed lost and
duplicate entriesremoved.Any nestedlistsare attened into the unordered structure.
Alternatively when a collection is usedin chain context the resulting ordering is un-
de ned, i.e. the resulting ordering is not predictable.In sectionx6.5.7 a method is
describedby which a collection canbe ordered into achainin ade ned manner

6. HEDGEHOG 179

6.2.6 Variables

Variablesare identi ed by a leading capital letter but can consistof upper or lower
casdetters, numbersand the underscoe symbol. Variablescanhold scalarsor lists. By
convention the variableUrepresentsthe collection of the entire hypemedia.

Variablesdo not needto be declared before they are used. All variablesare local
to the statementblock (x6.3.2) they are declaed in, with the exceptionof Uwhich is
global.

6.3 Structure

6.3.1 Statements

Hedgehog programs consistof a number of “statements'.A statementis one of the
following types: Iter , ordering, block, function call, list, variable,conditional or null .

Filter statementsare concemed with the selectingreferencesor values Filter state-
ments are discussedn more detail in sectionx6.4.

Ordering statementschangethe properties of atoms either in terms of identities
or positions. Ordering statementscanalsocreatenew atoms. Ordering statementsare
discussedn sectionx6.5.

A block is a collection of statements.Blocks are discussedn sectionx6.3.2.

Function calls passinput to a named statementblock (x6.3.2) and receivethe
output from that block. Function de nitions are discussedn sectionx6.3.4.

A conditional is the common conceptof an 'if statement’, and allows a choice of
executionpathsdependenton somevalue.Conditionals are discussedn sectionx6.6.

null isastatementwhich producesno output regadlessof the input. Using null
allows catenag(x6.3.2) which existonly for their side-efectswith their resultantout-
put not forming part of the output from the function. The term side-efect refersto
operationssuchaschanging of variablevalueseither to havea global effect — suchas
operationson U— or in preparationof someother catena.

6. HEDGEHOG 180

6.3.2 Catenasandblocks

In aUNIX-like operating systemcommandscanbe joined together by the mechanism
of “piping'. For example,Is -1 returnsalist of les whilstls -1 | sort | grep e
producesalist of les sorted in alphabeticalorder with only the entriescontaining the
letter "e' remaining. Note that the nal stepin the chain returns the output to the
calling routine, which in this casedisplaysthe resultsin the usersshell.

Hedgehog statementscanbe joined together in a similar way Each statementhas
aninput and an output “stream?. The output from a statementcan be directedinto
the input of another statement.The notation for the redirectionisthe) symbol.

A single statement,or anumber of statementgoined in this wayis called ‘catena'.

A generalisedcatenamay look like:

Gy Gy G

The detailsrepresentedby the ellipsesabovewill be discussedn the following sec-
tions. As a convention the terms “left' and ‘right' are usedwhen refering to relative
positions of statementsin a catena.This re ects the generalcaseabovewhere a state-
ment redirectsits output to a statementto its right. This is a descriptiveconvention;
the actual spatiallayout is not important and in some casesright' may be spatially
down and left.

A “block’ is one or more catenasBlocks are the functional groups of Hedgehog.
For example,functions (x6.3.4) are named blocks with arguments and the testsand
branchesof a conditional statement(x6.6) are alsoblocks. Blocks are notated with a
box surrounding them, e.g.:

The output from a block is a merging (via _, x6.4.3) of all un-redirected output
streams.In the aboveexamplethere are two un-redirectedstreamsat the far-right end

2This terminology re ects the UNIX usage.

6. HEDGEHOG 181

of eachcatena,thesetwo streamswould be merged to produce the output from the
block.

If the output from a catenashould not be included in the output from the block
the output streamshould be directedin anull statement.

The input streamto ablock is availableasthe specialvariableinput . Note that an
empty block passesontent verbatim.

Execution order with a block follows a number of rules. For most purposesthe
order isintuitive; top-to-bottom, left-to-right. However, for somecasest is usefulto
understandthe completerule-set.

Execution is caried out, nominally, in vertical order. That is, the left-most, top-
most statementis executed rst. Execution caries along that catenauntil either the
last statementis reachedor a statementwith multiple inputs is reached(x6.3.3). For
the simpleblock abovethis order would be:

|2

1
4

Where a statementrequiring multiple inputs is reached(x6.3.3), the statement
joins a "pending' queue. When execution can no longer continue for the current
catenaeither becauseof aninput dependencyor the end of the catenais reachedthen
the pending queue is consulted. Each statementin the queue is checkedregading
whether the statementcanexecute— i.e. if all input dependenciediavebeensatis ed.
If so, the item is removedfrom the queue and execution continues from this point.
If there are no valid possibilitiesin the pending queuethen execution continueswith
the left-most statementdown from the current location.

In the caseof a catenasplit (x6.3.3), one branch is followed with the other
branchegoining the pending queue.Which branchis followed andthe order in which
the othersare queuedis unde ned.

The executionorder for a simple split and merge:

6. HEDGEHOG 182

1) 2
J
5) 6
<
3) 4
J
;

Sincewhich branchis followed and which is queued at the split is unde ned, the

following is equally possible:

1) 2
J
6) 7
N
3) 4
J
5

6.3.3 Branching

The ow of acatenacanbe split and merged. The term “branching' representsboth
behaviours.

A split is where the output from a statementis duplicated and sentasthe input to
two other statements.The type of the datais preseved when split.

A merge is the opposite action with two outputs becoming recombined. The lists
involved in a merge are combined using the _ operator describedin section x6.4.3.
The following catenademonstratesboth splitting and merging:

6. HEDGEHOG 183

N J
(::3))
7 N
(::2)
()
J

(::2)
The branching shown here is binary, in that in eachcasethere are two streams
involved in eachoperation. This is not arestriction inherent in the language,and any
number of streamscanbe output from a split or input into a merge.

As previously describedthe output from a block is the merged output of all un-
redirected streams. The example above would contribute two streamsto the nal

output.

A specialcaseof branching is the list head' operation which sendsthe rst entry
in alist adifferent path to the remainder A list-headis denoted with asinglearow as
shown below, the remainderof the list, the “list body', continueswith double arrow

notation. Example:

[1;2; 3] '/ 1
[2;3]

Note the following:
If multiple list headsare speci edthe rst entry is duplicatedto eachstream.

If multiple list bodies are speci ed then the body part is duplicated for each

Stream.

If only alist headis speci ed the body is discaded.

6.3.4 Functions

Hedgehog programs are separatednto functions. There is no concept of a starting
function suchas main' in Javaor C. Hedgehog functions are called either my other

6. HEDGEHOG 184

functions or, ultimately, the hypemedia application using Hedgehog asa processing
language.

Functions are simply blocks with an assignedlabel and an optional list of argu-
ments. Shown below is a function named bingo' which takesthree argumentswhich
are assignedhe variablenamesA Dand H

bingo (ADH

Since bingo' hasan empty statementblock it will passcontent verbatim.

6.4 Filter

The term " Iter statement' captures the majority of statementtypesin Hedgehog.
Tasksaccomplishedwith Iter statementsinclude:

Selectinga setof references.
Retrieving the contents of an atom.
Retrieving the position of an atom along a given dimension.

Testing values.

6.4.1 Contextswith Iters

Two classesf scalarshave been described;value and reference. These types form
two contextsin which data can be considered. Speci cally, valuesexistonly in value
context but referencescanbe considered in either.

When areferenceis considered in value context, the value usedis the content of
the atom referenced. An exceptionto this is in the caseof position selectors(x6.4.2)
where the valueis the position along the dimension speci ed.

In the casewhere an binary operator comparesareferenceto avaluethe reference
will behavein valuecontext. This alsohappensfor operatorswhich only work in value
context. Seesectionx6.4.3 for more on Iter operators.

6. HEDGEHOG 185

By default the returned type will be referencesif either operandwasof reference
type. In sectionx6.4.5 amethod of forcing valuecontext is discussed.

6.4.2 Positionselectos

A position selectoris a modi cation to a reference which alters the value context
of the reference. Instead of the value context being the contents of the atom it is
the position along the speci ed dimension. Note that the modi ed behaviour only
lastsuntil avalueis returned. When a position selectorhasreturned a reference,the
referencedoesnot maintain amodi ed valuestatewhen later used.

The notational form is afull-stop betweenthe referenceidenti er andthe identity,
e.g. Ux refersto the x identity of the collection U There is a shortened form where
simply the identity is acceptableln this casethe referencedcollection is the prevailing
input (x6.4.7).

If an individual reference doesnot contain the identity specied it is not added
to the output collection. Seesection x6.4.4 for more about how lists are used as

operands.

6.4.3 Filter operations

6. HEDGEHOG

Operators | Description
+ Basicmathematicaloperations.All inputs are considered
in valuecontext. + and alsowork asunary operators.
< > Logical comparisons.All inputs are considered in nu-

merical value context. If returning a valuewill return 1
or 0 indicating true or false.If returning areferencewill
return the referenceif the test was passedor nothing
otherwise.

Logical comparisonslin referencecontext the references
themselvesnot the contents of the cellsreferencedare
compared. If returning avaluewill return 1 or O indicat-
ing true or false.If returning areferencewill return the
referenceif the testwaspassecdr nothing otherwise.

Logical AND, seesectionx6.4.6

Logical OR, compliment of *, seesectionx6.4.6.

Dif ference operator. Returns a list of valuesin left
operandthat do not appearin the right operand.

Logical NOT . Operandtreatedin valuecontext.

H

Returnsthe concatenationof two lists.

Parentheseshave the highest preference followed by ! then, in order,

followed by < >

=6 r + with and_ havingthe lowest precedence.

186

Note that all binary operatorsare left associativesothat 1 2 3 is equivalentto

(1 2 3

6.4.4 Listsasoperands

All operatorstake lists asoperandsand produce lists asoutput. When there is exactly

one entry in eachoperandlist the behaviouris asexpected.With other combinations

the behaviouris worth explaining.

The generalcasas that eachcombination of left and right entriesis processedand

all resultsaddedto the output list. For example,the result of [1; 2; 3]
be [5;6;10;12;15;18],i.e.[1 51 6;2 52 6;3 53 6]
As mentioned previously comparison operatorsin reference context return the

[5; 6] would

referenceif the testis true and nothing otherwise. Sincethe output list is madeup by

the concatenatedresultsof all tests,it canbe seenhow an operator lters results.The

testUx > 5 will only add referencesto the output which passthe rest.

6. HEDGEHOG 187

Equally a position selectorby itself forms a self contained test on this principle,
Ux on its own only addsreferencesto the output collection which passthe test of
“contains an x identity”.

6.4.5 Forcing valuecontext

Referencescan be turned into valuesby underlining an operand or statement. The
placementof the underline cangreatly affect the behaviourof the operation. Consider
the following example:

(Ux)

The Ux will selectthe x identity of all referencesin U The default behaviour
is to return the referenceswhich passthis test, i.e. the referenceswhich have a x
identity. The parenthesisin this particular exampleare superuous, but are included
for consistencywith the following examplesNow considerthis statement:

(Ux)

Underlining the Ux part forcesthe return type to be avalue,and the valuetype of
aproperty selectoris the position. Sothe returned datawill be alist of positionsthat
which existalong x. Finally, considerthe statement:

(Ux)

Note that the underline now includesthe parenthesesThis fundamentallychanges
the behaviour sincethe statementbeing forced to value context is not Ux but the
parenthesegshemselvesin this casethe Ux will return the appropriate referencesand
these referencesare converted to value context which will be the contents of the
atoms.

Note that referencescanbe converted to valuecontext, but the reversds not true.

6. HEDGEHOG 188

6.4.6 Joining lters

For anything other than the most trivial of Iters, operatorsmust be joined in some
wayto representa more complexbehaviour As mentioned in sectionx6.4.3 there are
operatorsusedto perform joins, AND (*) and OR (_).

AND takestwo listsare returns alist which containsentriesfrom both lists whilst
OR returns a list which containsentriesin either list. Note that AND differsfrom =
in that duplicate entriesare removed.If [1;2; 3] and [2; 3; 2] where compared with =
the resulting list would be [2; 2; 3] whilst with AND it would be [2; 3]. Note that OR
alsoremovesduplicate entries.

Two list entries are considered duplicatesif they consistof the samenumber of
list entries, and eachentry is identical. When checking an entry duplicate checking
descendghrough nestedlists.

6.4.7 Prevailinginput

The input streampassednto a lter statement,whether a single statementor a block,
is known asthe prevailing input. The prevailing input seenby a statementis altered
only by the useof) ; statementscanbe nestedarbitrarily deepwith parenthesesand
keepthe sameprevailinginput.

Prevailinginput is representedby the symbolinput where it needsto be explicitly
stated. For example,if it wasdesired to Iter a list of numbers so that only values
lessthan ve were presewed, the test would be < 5. Since< is a binary operator it
needsthe operandto be explictly statedi.e. input < 5. This sectionof a catenawould
therefore look like:) (input < 5)) .

Prevailing input also affects position selectorsdescribedin sectionx6.4.2. In the
casewhere the collection is explictly speci ed suchasUx the prevailinginput isirrel-
evant.However, if only the dimensionidentity is speci ed the prevailinginput is used
asthe collection. The following catenawould passonly referenceswhich havean x
identity and whoseposition along that dimensionis lessthan 10:) (x < 10)) .

Note that input :x < 10 would haverepresentedthe sametest exceptwith surplus
syntax.

6. HEDGEHOG 189

Considerthe lter:
(x<10_y< 10)

This Iter passeseferenceswhich havea position along x of lessthan ten or a
position along y of lessthan 10. The referencesdo not haveto haveboth ax andy
identity to pass.

The following Iter hasa secondoperation basedaround an arbitrary function
which has data passedto it. This function operateson the prevailing input and so
this needsto be altered before the function is called. Note that the original prevailing

input is restored for the nal testony.

(x< 10_ (A) somefunction ()) _y< 10)

6.4.8 Filter function

As part of the setof standad functions (x6.8) Hedgehog de nes a function named
" Iter' which providesthe capabilitiesof Iter statements.This function takesasingle
list asan argument. The list hasfour entries: unary operator, left operand, operator,
right operand. Eachargument is a standad data-type.

For example, the Ilter statement x< 10 can be achieved with
filter ([[];"x";"<";10]). Note the use of the null list, [], to show the lack of
an argument.

The lter function allows Iters to be generateddynamically For example,to de-
ne afunction that Iters referencesthat appearat position 10 or lessalong a dimen-
sion suppliedby the user This could be achievedwith:

smallpos (Id)
filter ([[];1d;"<";10])

6. HEDGEHOG 190

6.4.9 Filter examples

This sectiondescribesomesimpleexampleausing lter statementsFor more complex
examplesseesectionx6.9.

The following exampleselectghe rst two sentencesrom eachchapterfrom sup-
plied references:

chapter ~ sentence 0" sentence 1

Firstly, note that operator precedenceand left-associativitymeansthis Iter is in-
terpreted as:

((chapter ” (sentence 0)) * (sentence 1))

The rst evaluatedtest will be chapter . This test may seemunnecessay sinceit
hasno comparisonoperatorsrestricting the range of atoms selected.However, there
is arestriction here, which is that the atomsmust havea chapter dimension (x6.4.2),
henceexcluding parts of the input which do not representa book, or similar.

The secondevaluatedtestwill be sentence 0 which only passeseferencesfrom
the prevailing input that havea position along sentence of greateror equalto zero
(x6.4.2).

These rst two testshavetheir resultssetsmerged using AND # and this result
forms the left-hand operand for the outer merging. The right-hand operandfor this
merging is the result of sentence 1 which will passreferencesfrom the prevailing
input that havea position along sentence of lessthan or equalto one.

If _ wasusedinsteadof * asthe rst join operator the expressionwould havea
very different effect. Consider an input consisting of a book and a newspaperarticle
— which doesn't haveany chapter identities. In this casethe lter would selectall of
the book andthe rst two sentence®f a newspapemrticle.

The previousexamplemade an assumptionabout the structure of the newspaper
article, that there would only be one sentenceat position O and one sentenceat po-

6. HEDGEHOG 191

sition 1. If the article were divided into sections,so that the rst sentencein each
sectionwasat position 0 then more than two sentencedrom the article may be se-
lected by the aboveexpression.This underlinesthe important of aconsistentstructure
asdiscussedn sectionx5.3.1.

The following Iter selectshe atop-left and bottom-right sectionfrom images:

(x<10"y<10)_(x 100~y 100

Note that in the caseof aninput imagewith dimensionsof 50 50, for example,
the Iter would still selectthe top-left section.In this caseit might be prefered that
nothing isselected.This Iter canbe modi ed to selectalist of imageindicies(x5.3.3)
that have dimensionsof at least100 100 and make membership of this list be a
requirement for matching references.The revised lter below replaceghe rst clause

of the previousone:

X< 10" y< 10"~ image= ((x 1007y 100)) image)

6.5 Orderings

Ordering statementswork with the properties of atoms. Tasksaccomplishedwith

ordering statementsinclude:
Changing identities for an atom, from x to y for example.
Creating or deleting identities.
Altering positions along a dimension.
Creation of atoms.

An ordering statementconsistsof one or more “ordering groupings' (OGs). The
generalform of an ordering statementis shown below is shown below:

6. HEDGEHOG 192

((OKOKOG)

The input to an ordering statementis a referencecollection exceptin the special
caseof referencecreation discussedn sectionx6.5.9.

6.5.1 Orderinggroupings

An ordering grouping consistsof anumber of “ordering instructions'. Eachgrouping
providesa possiblematch for the input — normally a reference collection. A match
occurswhen a reference matchesall identities listed as “subjectidentities' aspart of
the “identity transformations’ (x6.5.2).

Groupings are listed in order of preference.Eachreferenceis tested againsteach
grouping in turn, when amatch is found no further comparisonsare made.If arefer

encedoesnot match any of the groupingsit is not passed.

6.5.2 Orderinginstruction

An ordering instruction consistsof two parts, the “identity transformation' (IT) and
the “position transformation' (PT), separatedoy a vertical bar e.g.:

ITjPT

6.5.3 Identity transfamation

The “identity transformation' determines how identities are affected by this instruc-
tion. The generalform is subject ! object . subject canbe any valid identity, re-
stricted identity, an asteriskor omitted. object canbe any valid identity, an asterisk,
an underscoee or omitted.

In the casewhere subject and object are both identities or restricted identi-
ties, atoms with the identity subject will haveit changedinto the identity object .

6. HEDGEHOG 193

If object is omitted the identity subject is removed. If subject is omitted then
the identity object is addedto the references;subject and object cannot both be

omitted. In summauy:

Identity Transformation | Effect

X!y Changeidentity x into y
X! Removeidentity x

Iy Createidentity y

! lllegal

The asterisksymbol is a wildcard. When usedasthe subject it matchesall iden-
tities not yet referencedwhilst asthe object it resolvesto the sameidentity asthe

subject .

Identity Transformation | Effect
! Match all remaining identities, do not alter
Iy Map all remainingidentitiesto y

X! Equivalentto x ! x

For an atom to match againstan OG all of the atom's identities must be refer
encedby IT statements.In manycasesa ! should be usedasthe IT for the nal
Ordering Instruction to match and presewe all unmatchedidentities.

As previously mentioned the left hand argument, subject , can be a ‘restricted
identity'. Theserestrictionsare appliedto adimensionto limit the rangewhich matches.
Theserestrictionscantake formssuchasx < 10,5< x< 15, x= 30or x 6 3.

6.5.4 Positiontransfamations

Position Transformations alter the positions along a dimension where an atom is
placed.There are two basicforms of PTs: ranged spanand relative. PTs are not used
aspart of an Ordering Instruction which removesan identity.

A rangedspansetsthe positions of atomswith achosenrangeand increment. The
form of arangedspanis start direction increment. start isthe position at which
the rst atom is placed.direction is either an upwards or downwards pointing arrow
which describedn which direction atomsshould be added. An upwards — ascending

6. HEDGEHOG 194

O & G [

a=0 a=1 a=3 a=8
FIGURE 6.2: Atom setfor PT examples

[& G A

a=10 a=11 a=12 a=13

[G RO

a=7 a=8 a=9 a=10

FIGURE 6.3: Position Transformations with source and increment

— arrow presewresthe original ordering whilst a downwards — descending— arrow
reverseshe order. increment de nes the steppingbetweenatoms.

For example,the rangedspanl10" 1 statesthat atomsshould be placedfrom po-
sition 10 onwards, the original ordering should be presewved and atoms should be
placedevely 1 positions. Figure 6.2 showsa setof atoms. Figure 6.3 showsthe result
of ordering theseatomswith the rangedspanslO0" 1 and10# 1. In this example,and
the onesthat follow, the resultsof the ascendingtransformation are shown on top
with the result of the descendingtransformation shown underneath.

If the start argument isomitted the lowestvalue— for ascendingransformations
— or the highestvalue— for descendingtransformations— among the input is used.
Figure 6.4 showsthesetwo cases.

If the increment argument is omitted the original spacingbetweenthe atomsis
retained.Figure 6.5 showsthe transformation where the start valuehasbeensetbut
the increment hasnot.

Finally, if both start and increment are omitted, the rules of presewing start

01 & G [

a=0 a=1 a=2 a=3

[G [O

a=5 a=6 a=7 a=8

FIGURE 6.4: Position Transformations omitting start

6. HEDGEHOG 195

01 2 G [

a=10 a=11 a=13 a=18

[Gl B O

a=2 a=3 a=5 a=10
FIGURE 6.5: Position Transformations omitting increment

[G RO

a=0 a=1 a=3 a=8

FIGURE 6.6: Position Transformations omitting start andincrement

position and presewing spacingare combined. For ascendingtransformations this
meansthat no changestake place, for descendingtransformation the positions of
valuesare effectively swappedasshownin gur e 6.6.

6.5.5 Mergingdimensions

The order in which ordering instructions appearwith anordering grouping hasmean-
ing. The ordering is one of priority levels,the rst statementin the grouping is the
highestpriority. Thesepriorities do not haveany effect unlesstwo or more statements
map onto the samedimension.

Consider the atomsshown in gur e 6.7. Presumethe userwantsto map both a
and b onto x. There are a number of waysthis could be achieved,but rstly consider
two ascendingorder mappings. If the mapping for a hasa higher priority then the
atoms are ordered rst by their a valuesand then by their b values.In this casethe
resulting pattem, readingalong x in ascendingorder, would be 1, 2, 3, 4,5, 6, 7, 8.

[] [

a=1
b=2 b=3

[e] [

a=2 a=2 a
b=2 b=3 b

oo
nnu
rgEy
o9
B =

[=]
[=]

T o
T
-- N
T
AN

FIGURE 6.7: Examplepre-ordered atoms

6. HEDGEHOG 196

If altemativelythe mapping waschangedto makeb the higher priority the pattem
would insteadbe: 1, 5, 2, 6, 3, 7, 8. The table below showspossiblecombinations
basedon this exampleset,the rst PT in eachrow is the higher priority one.

Ordering | Outcome

a"b" 12345678
b"a" 15263748
a"b# 43218765
b#a" 48372615
a#b" 56781234
a#b# 87654321
b#a# 84725251

How could the pattemn 1, 8, 2, 7, 3, 6, 4, 5 be achieved?This result is not pos-
sible with a single ordering, but is possiblewith two. The rst statementreverseghe
ordering along b but only where a is equalto 2. Once this hasbeendone the pattem
can be achievedusing the 2nd prioritisation in the table above.Note the useof the
secondgrouping in the rst statementto passatoms unaltered which do not match
the rst grouping. If this grouping were omitted, only atomswhere a is equalto 2
would be passed.

switch ()
a=2 !

Ve
X X X

6.5.6 Permanencef e ect

Sinceorder operationstake placeon referencesthe effectsof the changewill instantly
be re ected in the ADS. If this is not desired then operationsshould work on a copy
of the atomsinstead.Hedgehog de nes a function named copy() which, when sup-
plied with areferencelist, will createnew atomswith the samecontents asthe atoms
referencedin the input and with the sameproperty set. Note that this doesnot cause
an addressingclashsincetheseatomsdo not existin the masterADS.

Basedon the function switch () de ned abovea string could be createdwith the

6. HEDGEHOG 197

charactersn the new order with the catenas:

input) copy()) switch()) (x! j")) () Temp null
[Temp

Alternatively this could be done without the Tempvariableby placing the bulk of
the catenadirectly inside squase brackets.:

[(input) copy()) switch ()) (x) ")) 0)]

Note that the result must be enclosedwithin a setof squae bracketsin order for
the resultlist to feature asinglestring asopposedallist of stringseachof one character

6.5.7 Collectiongo chains

The previousexamplesshowedthe rst useof the underscoe symbol asan object .

This symbol is used to representthe ordering along the output list itself, i.e. it is
usedto de ne achain rather than a collection by making the order of the references
in the list predictable. Ordering instructions featuring the underscoe do not affect
the properties of the referencedatom. Note that for the position transformation the

positions assignedrefer to the zero-index list. Any unde ned indices are removed
from the output list.

6.5.8 Orderingand multiple positions

When working with dimensionsthat havemultiple positions, ordering statementsbe-
have asthey would with multiple atoms. For example,an atom hasthe property of
x = 1;2;4 if the position transformation of 5" wasapplied the property would be-
comex = 5;6; 8.

To add multiple position to an atom the identity creation form is used.For exam-
ple, to add the property of image.id = 2 to a setof references:(! image.idj2" 0).
Note that the creation form createsidentities where they do not existbut will multi-
position in casesvhere the identity doesexist.

6. HEDGEHOG 198

The opposite operation is to removemultiple position from an atom. In this case
presumablyonly a setnumber of positions should be removed.To achievethis is sim-
ply anidentity removaloperation with arestricteddimensionidentity. Sothe opposite
of the previouscreation would be: (imageid = 2!)

6.5.9 Creatingreferences

Referencesare createdusing aspeciakcaseof ordering statementwhere the input is not
areferencelist but a valuelist. The identity transformations must consistof identity
creations.A string could be createdin the following way:

“Hello ") ((! xj0" 1))

Note that this caseexpectsastraightlist of charactersand not the normal outer-list
for the multiple itemsform.

This operation createsatoms and returns referencesto them, but doesnot add
theseatomsto the masterADS. To commit the referencesto the ADS they must be
committed to the universalvariable(x6.7).

6.5.10 Orderfunction

The functionality of ordering statementsis additionally availablethrough a function
named "order()' which takesa nestedlist asinput. The outermost list representsthe
ordering groups. Within eachordering grouping list, eachentry is an ordering in-
struction.

Eachinstruction list consistsof nine entries.The rst ve entriesdescribethe sub-
jectidentity: operandloperatorlidentity operator2operand2 For example,0 x < 10
would be stored as[0;"<=";"x";"<";10 andy = 2 would be [[];[];"y";"=";2].
The seconditem in the identity transformation list is the object identity. Note how []
is usedasa null value,rememberthat numbers are representedby lists so an empty
list signi es no value.

The sixth entry is simplethe object identity, e.g."y" .

6. HEDGEHOG 199

The nal threeentriesrepresentthe position transformation and the valuessignify
the starting position, direction andincrement,e.g.10" 1lisrepresentedcby [10; "up"; 1].

As amore complex example,the switch () function previouslydescribedcould be
re-written as:

switch ()

(L[l ="2"a" [];"up”;[]]) 11) null
([L[]"p" [][] " ;[];"down™;[1]) 12) null
CLLE™ " ILIE™ "0 "up™;[11) 13) null

CECE"" LI ™" ["up™ 5 [11) 14) null

([L[]"a ,[],[];X [1"ups[11) 15) null

CECE" " IEIE™" s[5 up [11) 16) null

order ([[12;12;13];[13])) order ([[14;15;161]])

In the above examplethe ordering is formed from severalstatementsfor clarity,
although it would be equallyvalid to form the list using a single statement.

The purposeof this form isto allow an ordering statementto be createddynam-
ically by a Hedgehog program itself, such asin the getvalue () function in section
x6.9.5.

6.6 Conditionals

Conditionals allow branching basedon certain input. The format for a conditional is
the keyword if followed by a block for the test and the block for the commandsto
executeif this testis met. Following this is an optional elsif providing an altemative
match. Lastly, an optional else keyword with a block of commandsto executeif no
if orelsif line matches.Aswith other programming languagesan arbitrary number
of elsif smaybe present.

Truth is evaluatedin the following way An empty list or alist consisting of only
valueswhich evaluateto 02 is “false',all other lists evaluateto “true'.

The following conditional adds10 to the output if the valueof hin is greaterthan
10, 5 if the valueof input islessthan 5, andinput otherwise:

3This includesthe empty string for example.

6. HEDGEHOG 200

;
eisi

6.7 Altering content

Contents of atoms can be changedby passinga valuelist into a referencelist. The
number of atomsin eachlist must be identical*. For example,the rst ve characters
of a string could be changedwith:

"Hello ") (U) (x O0~x 4~sentence =2)) ((x! j"))

In this examplea nested lter is usedto selecta number of referencesfrom Uand
order them into achain. That setof ordered references receivesthe valuelist.

To createor delete content operationsare performed on U the variablerepresent-
ing the entire ADS. For example,referencesrelating to books are removedfrom an
ADS with the catena:

U) (input r chapter)) U

In section x6.5.9 the method of creating atoms was describedand it was men-
tioned that creating a referencewithin Hedgehog doesnot affect the universalADS
unlesscommitted. That commitment is simply writing into U, e.g.:

[1.2;3]) (f x0"1)) U

N
U

4In the caseof nestedlists, the number of entriesin eachnestedlist must be identical, i.e. both lists
must havethe same’shape'.

6. HEDGEHOG 201

6.8 Standard functions

A number of functions are de ned aspart of the languagespeci cation. This section

describeghe operation, but not the internal working, of thesefunctions.

address()

Returns the properties of the suppliedinput. Eachref-
erence forms a nestedlist in the output. Within each
output list a two entry list is used for the identity
and value, e.g. a two reference input may produce

[rx"; 25 ["y"; 101 [[" z*; O]].

chr()

Returns a list of charactersassociatedwvith the input list
of values,e.g. [65; 66] produces[A ; B]

filtker (definition

)

Function versionof lter statementsseesectionx6.4.8

identities ()

Returns a list of identities for each reference sup-
plied as standad input. For example a reference to
an atom within an image may produce a list of

['x";"y";"c";"n";"imag€e']

length ()

Returnsthe length of the list suppliedasstandad input.
Answeris returned asa singleentry list, e.g. [12]

ord()

Returns a list of valuesassociatedwvith the input list of
characterse.g.[A ; B] produces|[65; 66]

order (definition)

Function version of ordering statements, see section
x6.5.10.

position (name$

Returns positions for namedidentities. namescontainsa
list of identities, e.g. ["X"; "image'].

unique() Passe#emsin the input which are unique in the input.
For examplethe input [1;2;"Hello "; 1] would produce
[1;2;"Hello "].

value () Returns the value state of input, function equivalentof

underline.

6. HEDGEHOG 202

6.9 Examples

This sectioncontainsworked examplesof somehypemediatasksusing Hedgehog.

6.9.1 Zero-indexing

Consider the casewhere of working with a collection that containsa number of im-
ages.Someof theseimageswere incorporated from les, somewill be framesin video
clips and somewill be de ned asbeing arbitrary collections of pixels. This last case
captures examplessuch asin gur e 5.8 where an image is de ned within another
image.

For somepurposeausermaywishto haveacollection of imageswhere eachimage
existsindependently and starts at (0; 0). Intuitively the usermaycreateafunction such
as:

imageToZerd)

X X
copy()) y : y

However, this function doesnot work asexpected.When the position transforma-
tions for x andy are caried out all input referencesare consideied when nding the existing
range. Therefore for two images,one where0 x 10 andonewith 5 x 15 the total
considered range will alreadystart at zero and no position transformation will take place.To
solvethis problem eachimage needsto be consideed individually.

The following function takesa list of image indices and for eachindex makesa copy of
the image relocatedto (0,0). Looping in Hedgehog is achievedby using recursion. In the
recursivefunction alist headoperationis usedto takethe rst entry from the List argument,
processthis and add the resultto the result of the function with the list body becoming the

new argument.

6. HEDGEHOG 203

imageToZeroList (List)
if | List) length () |
List Y Head) null

Body) null
(image= Head) imageToZerd)) Ordered) null
Ordered + imageToZeroList (Body)

]

Initially imageToZeroList () is calledwith the completelist of identities in the input. The

else

function calledfor the “translate to (0,0)” effectis therefore:

translateToZero ()
imageToZeroList (image) unique ()

6.9.2 Referto me

This section describesa function which retrievesreferencesthat refer to the referencessup-
plied, i.e. if atom a hasthe property image = 2 and atom b hasthe property image.id = 2,
passingthe referencefor a to this function would return the referencefor b.

This function takesa chain and returns a list of collections, one list for eachreferencein
the original collection.

Initially, it is usefulto considerthe simplercaseof afunction which takesa singlereference
andreturnsacollection of referenceswhich referto this singlereference.The function retrieves
the list of identities for the argument referenceand passeshis to afunction which will retrieve
all the referencespointing to the argument reference. Note that the returned data from this
recursivefunction is passedo unique asa single referencemay referto our target reference

more than once and duplicatesshould be avoidedin the result set.

referToMe (Ong
referRecurse (identities (Ong)) unique ()

The function calledby referToMe isrecursive,againto form aloop. For eachiteration the
function Iters referenceswhich havethe identity currently being consideled and one of the

positions held by the referencebeing consideled.

6. HEDGEHOG 204

referRecurse (List)

if | List) length |
List IJ Head) null
Body) null
(filter ([];Head+"_d";"=";(positions (Head! ())])) A) null
A+ referRecurse (Body)

else

]

To give the functionality desired of being ableto supply areferencelist to return alist of

collectionsreferToMe() isrede ned with recursionto provide alooping effect:

referToMe (Chain)
if | Chain) length |
Chain!, Head) null

Body) null
identities (Head) Idlist) null
[referRecurse (Idlist)) unique ()] + referRecurse (Body)

]

else

6.9.3 Appeas

In this examplea function namedappears() isde ned which returnsreferenceswhich referto
anitem in a sub-structure holding a particular value. For example,it is possibleto seach for
“Bob” in a(name x) sub-structure and receiveacollection of referencesthat havea nameid
identity pointing to the appropriate item in the sub-structure.

The function must copewith the following requirements:

The sub-structure may be more than two-dimensional, for examplethe atoms may
havethe properties of name x revision . The depth of the sub-structure must be

seached.

The key seached for may appearin more than one place. The function should return

referencesto atomswhich point at any of the occurrences.

The index seachedfor, namein the aboveexample,should be speci ed asan agument

to the function.

6. HEDGEHOG 205

The function appears() takesa collection of referencesasprevailing input and two ar
guments: Find and Index. Find is the data which should be seached for and Index is the
identity to seach along. For example,Index maybe “name” and Find may be “Bob”.

appears() usesa recursivefunction, appearsRecur() to perform the check for Find
againstone position along Index . appears() forms the basecasefor this function and calls
appearsRecur() with alist of all positionsalong Index . appearsRecur() returnsalist of po-
sitions along Index where Find wasmatched. The nal stageof appears() locatesreferences

which havethe identity of Index with “ _id” appendedand a position in the returned data.

appears(Index; Tofind)
fiter ([[];[];Index;[]])) PositionList) null

appearsRecur(Index ; Tofind ; PositionList)) ResList) null
filter ([[];Index +"_.id" ;"=";ResList])

The function appearsRecur() checkseachposition in the suppliedlist along Index and
returnspositionswhere Find appearsThe function usesrecursionto checkeachentry in turn,
calling itself with a shortened list eachtime and appendingthe resultsfrom the recursivecall.

For eachposition — i.e. the Headin eachcase— alist of referencesat the current posi-
tion is retrieved. For thesereferencesthe function needsa list of addresspermutations. The
address() function cannot be useddirectly sincex should be excludedx from the permuta-
tions. For example,if the sub-stucture wasname x revision the function should con-
siderall valid combinations of name revision . To thisendamodi ed versionof address()
named addrmod) is usedwhich is de ned in sectionx6.9.4. addrmodtakesa list of identity
namesto excludefrom the output.

Once the list of addresseshas been generatedit is passedto appearsAddress() which

returnsthe resultfor alist of addresses.

appearsRecur(Index ; Find ; Positions)

if |length (Positions)
input IJ Head) null

Body) null
fiter ([];Index;"=";Head)) addrmod["x"])) Addr) null
appearsAddress(Index ; Find ; Addr) + appearsRecur(Index ; Find ; Body)

else

6. HEDGEHOG 206

appearsAddress() is a simple recursivefunction to check eachaddresscombination in
turn using the function appearsAddressOng).

appearsAddress(Index ; Find ; AddressList)
if lengthAddressList |
AddressList !, Head) null

Body) null
appearsAddressOngIndex; Find;Head) Temp null
TempH appearsAddress(Index ; Find ; Body)

appearsAddressOng) takesan individual addressand returns the position along Index

else

if Find matchesalong this addressor the empty list otherwise. This function usesa separate
function to lter referenceswhich appearat this addressand ordersthem along _ accoding to
their x positions. This list is then compared using a normal string comparisonagainstFind . If
the matchisfound then the referencesare simply Iter ed by Index with the return valuebeing
forcedto avaluestate.There will only be a single position along Index , becauseof when the
routine is called.

Note that since= expectsalist of valuesnot asinglevaluea single string should be passed
into appears() as['Bob"] not simply"Bob". However, this doesmeanthat the functions cope
equallywell with alist of stringswith the nal resultsetconsistingof atomswhich referencea
sub-structure entry with any of the valuesspeci ed.

appearsAddressOngIndex ; Find ; Address)

MECE™" 5 IEIE" "0 "up™; (1) Exp) null
addressFilter (Address)) order (Exp)) String) null

if [String = Find|
][filter (L T; Index; [;[]])]‘

The function addressFilter calledabovepasseseferenceswhich match a particular ad-

else

dress.An addressis a nestedlist in the form of, for example,[[" x"; 1]; ["y" ; 2]]. This function
needsto recursewith eachiteration Itering by one property pair. For eachpair, references
passingthe Iter testare passednto the recursivecall.

6. HEDGEHOG 207

addressFilter (Address)
if |length (Address)|

Address!, Head) null
Body) null
Head!j Id) null
Pos) null
if |length (Address) = 1)
ffilter ([];1d;"=";Po9)]
else
filter ([];1d;"=";Pos)) addressFilter (Body)|
else
6.9.4 Addrmal

appearsRecur() requiresa function namedaddrmod) which returns alist of addressedor a
referenceexcluding one or more identities passecasan argument to the function.

This function begins by using the supplied address() function and calling a recursive
routine which removesall occurrencesof the passedidentities. Since this will leave many
duplicate casesthe unique () function is used. Duplicates appearsince, for example,if the
addressex = 1;y = landx = 1;y = 2 are usedwith y being excludedthe addressx = 1 will

appeartwice in the output.

addrmodExclude)
address()) addrmodRecufExclude)) unique ()

addrmodRecuf) is arelativelysimple function that for eachproperty pair callsa function
namedaddrmodOn@ which will return the pair unlessthe identity of the pairisin the Exclude

list.

addrmodRecufExclude)
i |length (input)|
input l/ Head) null

Body) null
addrmodOngExclude) + addrmodRecu(Exclude)

else

6. HEDGEHOG 208

addrmodOn@ splitsthe suppliedpair into identity and position and comparesthe identity

againstthe Exclude list. If no match is found the pair is returned.

addrmodOnéExclude)
Head, Id) null

Position) null
if |[ld] = Exclude]

else

6.9.5 Highest

In sectionx5.3.6.1 it wasmentioned that often a sub-structure would be deepin some di-
mensionsuchasyear. A usermaywant to only considerreferencesfor the highestyearvalue.
Note that the referenceswill likely haveayear _id identity referencing a sub-structure instead
of ayear identity and soit is not enough to locate the highest position along the dimension
sincethe order of yearswithin the yearsub-structure is unde ned with the highestvalueyear
being equally possibleat year = 0, year = 2 or year = 42.

highest () starts by getting alist of all positions along an index dimension and passeshis
list to arecursivefunction, highestRecur () which will return the position at which the highest
value appears.If there is a joint highest value all positions with that value will be returned.
When the position(s) havebeenreturned the input is Iter ed for all referenceswhich referto
the position(s).

The function takesan Index argument which refersto the appropriate index dimension,
in this case“year”. The function takesanother identity, Horiz , which de nes the natural

ordering of the structure, e.g. x for text and n for numbers.

highest (Index ;Horiz)
fiter ([];Index +"_id";[];[])) highestRecur (Index;Horiz)) Best) null
filter ([];Index +"_.d";"=";Best)

highestRecur () works by recursing,where for eachiteration the headis compared against
the highest valuefrom the body, Leader. Leader doesnot contain a value but one or more
positionsreferencing values.The getvalue () function is usedto convert from a position to a

list of values.

6. HEDGEHOG 209

If the headis greaterthan Leader the headis returned, if the valuesare equalthe headis

addedto Leader andreturned, otherwiselLeader isreturned.

highestRecur (Index ; Horiz)
if llength (input) = 0|

il

elsif [length (input) = 1]

input ! Head Il
mpuJ ead) nu

else

Body) null
Body) highestRecur (Index;Horiz)) Leader) null
Leader) getvalue (Index;Horiz)) Leadval) null
Head) getvalue (Index;Horiz)) Headval) null
if |Headval > Leadval]

[Head
elsif [Headval = Leadval]

[Head + Leader|

else

getvalue () isrecursiveto processanumber of positions. For eachiteration, referencesat
that position are Iter ed and ordered along _ to form avaluewhich is addedto the result set.

First afunction is de ned to get the numeric valueof ayearbasedon ayear _id .

getvalue (Index;Horiz ; Pos)
if length (Pos)
Pos!, Head) null

Body) null
fitker ([[];Index;"=";[Pog]])) A) null

A) order ([;[Horiz ; [T, [1" 5[1 "up™ s [11)) B) null
B+ getvalue (Index ;Horiz ; Body)

else

6.10 Conclusion

This chapterhasintr oduced Hedgehog, alanguagefor the manipulation of ADS. The devel-

opment of Hedgehog hashelped highlight issuedfor a programming interfaceto an Atomic

6. HEDGEHOG 210

Hypermedia system.Lacking any survey of Hedgehog in use,it is hard to evaluatejust how
usefuland practicalthe languageis. However, the work here haslaid the groundwork for any
ADS-interfacing language.

6.10.1 Furtherwork

One key point for the developmentof Hedgehog is the implementation of an interpreter to
test the practicalusefulnesf the language.Relatedto this is a requirement to addresshow
centain languagefeaturescan be representedin a practicaldevelopmentformat. For example,
most programming languagescan be notated in a simple text editor but this is not trivial for
Hedgehog due to the needto be ableto havebranching catenasunderlined statementsetc.

Although many traditional languagessuchasC or Javaare sub-optimal for working with
ADS the sameis not so obviously true for functional languages.These languagessuch as
Haskell or Miranda havestrong list processingcapabilities,and this chapterhasdemonstrated
the needfor suchabilities when working with ADS. Further developmentof Hedgehog will
benet from closerexamination of functional languagesand either being in uenced by the
large amount of establishedwork in this areaor perhapsmoving Hedgehog towardsbecoming
more like atraditional functional language.Alternatively, an existingfunctional languagecould
be extendedto give ADS-manipulation capabilities.

Finally, there havebeensuggestionshaveHedgehog, or asimilarlanguage,could be useful
not only for Atomic Hypermediabut alsofor working with zzStructures,which aspreviously
discussed5.4) shae somecommon propertieswith ADS.

211

CHAPTER 7

CONCLUSION

Although this thesishas describedthe reseach asa single story, for these conclusionsit is
usefulto split the discussioninto two distinct parts. “Modelling hypemediaimplementation”
(MHI) and“Modelling node-lesshypemedia” (MNLH) re ect the two clausesn the title of
this work.

The rst of these,MHI, considersapracticalapproachfor the designof expandablehyper
mediasystemsThis areaof reseach accountsfor the majority of chapter2, and all of chapters
3 and 4, and hasalso led to a number of publications [7][61][62][63][64][65][73][93],
copiesof which canbe found in Appendix A, along with forthcoming work suchas|[15].

The secondpart, MNLH, describesthe work on Atomic Hypermediain chapter5 and
Hedgehog in chapter6. Unlike the work in the MHI part, this reseach hasnot beenstrongly
focusedon practical considerations,but on developing a new way to approach hypemedia
reseach.

7.1 Modelling hypermedia implementation

As previouslymentioned, the presentationorder of the work doesnot re ect the development
process(x1.3). However, despitethis “evolutionary' approachthe nal resulthasbeenaclear
uni-dir ectional dependencybetweenthreecollections of results.The rst collection described
the supporting hypemediatheory (x2). The seconddescribesystemmaodels(x3) culminating
in amodel namedMeles (x3.6), which is basedon the supportting theory. The nal collection
describesan application named Goate (x4) which is basedon the systemmodelling.

A signi cant part of the theory discussiondocusedaround the ideaof documents. Whilst

7. CONCLUSION 212

other reseach may describea document in terms of a collection of nodes, the ordering of
content within the document is frequently left unde ned. This thesisarguesthat the concept
of "document' should be resewved for an ordered composite (x2.8.6). This work has also
describedhow the idea of a "document' can be modelled using the concept of “node'. This
is a useful modelling sinceit reducesthe number of active data-typesin a systemand helps
describethe behaviourof nodeswhen affected by linking.

The work hasdemonstratedhow the concept of linking is closelytied to that of docu-
ments. In particular how actionssuchas inclusion’' on a node leadto document formation.
The act of inclusion wasconsideed alongsideother linking actionssuchas’traversal'and “re-
placement'(x2.5). Theselinking behaviourswere describedin terms of “subject' and “object’,
i.e. that which is affected,and the content by which it isaffected(x2.2.5, x2.5.1). This concept
waslater usedduring the developmentof the systemdesignmodels.

The work on modelling link actionsshowedthat the conceptof a link end-point should
be separatedfrom the concept of the link activator (x2.7.3). The concept of link activator
wasmodelled under the nametrigger'. Sectionx2.7 describeda generictrigger structure and
discussedhow the conceptof atrigger could be reconciledwith link structures.

Chapter 3 describedthe developmentof modelsusedto guide systemdevelopment. The
discussionof the earlymodelshelpsto describethe considerationspresentat variousstagesof
the reseach and the discussion®f the shortcoming of eachhelp to understandthe structure
of the nal model, Meles (x3.6).

Meles is a practical, modular design for the systemdesign. Meles separateshe storage
of nodes, storage of links, retrieval of nodes, interpretation of linking speci cation, media
processingand client interfacing. The model supports systemswhich have a variety of the
thesecomponents, so a systembasedon the model should be easilyexpandable.

The model is not simply an arbitrary separationof responsibilities,but includes descrip-
tions of how operationsare caried out. For example the logical ow from initial client request
through to the displayof a complexdocument canbe tracedthrough the design.

Chapter 4 describesGoate, a hypemedia systembasedpatrtially on the ideaspresentedin
chapters2 and 3. Goate hasvaluein severahreas Firstly, it isareseach tool which throughout
this work wasusedasaplatform to explore ideasallowing the modelling of both core concepts
and entire systemsaspreviouslydiscussed.

Secondly Goateis ausefultool for implementation of linking languagesThe implementa-

7. CONCLUSION 213

tion of GHURLE (x4.7.4) and GGoogle (x4.7.3) showthat languagescan be realisedin this
way Theselanguageshelp to demonstratethe exibility of the approach asGHURLE uses
xed linkbasesspeci ed extemally to the content whilst GGoogle usesdynamic queriesbased

on aspeci cation embeddedin the content.

7.2 Node-less hypermedia

Atomic Hypermedia describedin chapter 5 wasinitially conceivedasan altemative, if rad-
ical solution to the problem of hypemedia spanswhich crossnode boundaries. However,
from this initial idea Atomic Hypermediahasgrown into asigni cantly different approachto
hypemedia.

Chapter 5 describedhow content can be representedwithout encapsulatingnodes but
with a structure consistingof "atoms', eachone holding a single character The overall struc-
ture, Atomic Data Structure, allowsatomsto be placedat multiple locationsalong anarbitrary
number of dimensions.Basedon the single data-typeof "atom’, other typescanbe described,
and thesedata-typesusedin turn to form others. From here complex structures can be de-
scribed.

The power of Atomic Hypermediacomesfrom the factthat no matter how complexadata-
structure becomes,and how many dimensionsit includes, it is possibleto extractinfor mation
at an arbitrary level of granularity, asrequired. This is possiblesince as any data-stucture
ultimately consistsof only atoms, a single atom-referencing addressingschemecan be usedin
all cases.

Furthermore, the use of dimensionsto denote membershipof a particular classenables
other behavioursnot easilyachievedwith a node-centric view. For example,within what was
originally a video clip an image may be labelled which can then be used asanother image.
Similarly, within an existing image a separatelyaddressablémage may be labelled.

It is also possibleto link sectionsof content together through the use of re-direction.
This process,similar to that of databasenormalisation, reducesredundancythroughout the
structure.

Whilst chapter 5 describesthe principles of Atomic Hypermedia, it doesnot describea
way to manipulate this data, sinceit is envisagedthere are many equally valid waysto do
this. However, as a separateconsideration this work does propose one such approach for
manipulation, Hedgehog, and this is describedin chapter6.

7. CONCLUSION 214

Hedgehog is basedon the paradigm of processingcollections of atoms, or more accu-
rately referencesto atoms, in a streambasedmanner. Processinginstructions are formed into
functional blocks which perform a certain task. A greatertask cantherefore be performed by
joining blockstogether. Hedgehog recogniseghat given a particular collection of atomsthere
may be arequirementto perform severabperationsin parallelon the collection, later merging

the resultstogether. To this end, Hedgehog featuresthe ability to split and merge collections.

7.3 Further work

This thesishastouched on many elds and so presentsa range of possibleavenuedor further
reseach. Theseissuesare discussedhroughout the thesis,but are collated here for conve-
nience.

There are a few areasof the modelling implementation work that would benet from
further development. "Paneoperations', that is the handling of manipulation of contained
areasof aclient view, are not adequatelydescribed.For example,whilst it is possibleto model
the linking action of “appear'with the current subject/object form, the method doesnot easily
expandto coverdescriptionssuchasdisappearmove, resizeetc. Initial work suggestghat the
effective end-points of an activatedlink include not only the span, but a “pane operation'
description of someform.

Whilst Meles providesa good model for systemswhich support the reading of hypeme-
dias, it doesnot currently model authoring actions. Theseactionsinclude the editing of the
content and the manipulation of the linkbasesheld by the respectiveSources.Further devel-
opment should focus on how theseactions canbe describedin a common manner, so asnot
breakthe separationbetweenthe constituents.

Goate is currently a useful system,but its usefulnesscan be greatly enhancedby mov-
ing towards full Meles compliance,allowing document formation behaviours.Furthermore,
the move from a focuson HTTP proxying to the view of proxying asjust one possibleim-
plementation environment should be completed, with all of the proxying code movedto an
Environment module. The exibility of the Meles approach could be demonstrated by the
implementation of Environment modules supporting other client types. Other possibilities
for further work include working on a Goate-to-Goate communications protocol to support
behaviourssuchasusing a 3rd-party Goate sewver to interpret alink speci cation.

Atomic Hypermediawould greatly bene t from an implementation of the system.The

7. CONCLUSION 215

work on MHI usedthe developmentof Goate asa test platform, and asa meansto highlight
issues/shotcomingsin the model. It is believedthat a similar procesgor Atomic Hypermedia
would help developthe ideasfurther. Also in this areaa standad should be worked on for the
standadisedincorporation of mediainto Atomic Hypermedia.

Similarly, Hedgehog would bene t from being implemented. This would allow the lan-
guageitselfto be effectively evaluatedagainstother methods of manipulating Atomic Hyper-
media, suchasa classor library for an existinglanguageor a new languagebasedmore closely
on a particular existing language.

216

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

OpenBSD asprintf . http://www.openbsd.org/cgi- bin/man.cgi?query=asprintf

R. Akscyn, D. McCracken, and E. Yoder. KMS: a distributed Hypermedia system
for managing knowledge in organizations. In Proceedingf the ACM confeenceon
Hypernext, pagesl-20. ACM Press,1987.

K. M. Anderson, R. N. Taylor, and E. J. Whitehead Jr. A critique of
the Open Hypermedia Protocol. Joumal of Digital Information, 1(2), 1997.
http://jodi.ecs.soton.ac.uk/Articles/v01/i02/Anderson/

M. H. Anderson,J. Nielsen,and H. RasmussenA similarity-basedhypertext browser
for readingthe Unix network news. Hypemedia, 1(3):255-265, 1989.

H. Ashman. Theol and practiceof lar ge-scaldlypemedia managementsystemsPhD
thesis,RMIT , 1997.

H. Ashman. Relationsmodelling setsof Hypermedialinks and navigation. TheCom-
puter Joumal, 43(5):345-363, 2000.

H. Ashman,T. Brailsford, D. Martin, A. Moor e, and C. Stewat. Proxy-basedlinking
in an adaptive Web-basedIntegrated Leaming Environment. In Proceedingsf the
IADIS e-Societinternational confeence pages349-355, June 2003.

J. Axelsson,B. Epperson,M. Ishikawa, S. McCarron, A. Navaro, and S. Pembetton.
The XHTML 2.0 working draft. http://www.w3.org/TR/xhtml2/ , May 2003. W3C.

M. Bermnstein. An apprentice that discovershypertext links. In A. Rizk, N. Streitz,
and J. André, editors, Hypertext: conceptssystemand applications pages212-223.
Cambridge University Press,New York, NY, USA, 1992.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES 217

M. Bemstein. Card sharkand Thespis:exotic tools for Hypertext narrative. In Proceed-
ings of thetwelfth ACM confeenceon Hypertext and Hypemedia, pages41-50. ACM
Press,2001.

M. Bernstein. Storyspacel. In Proceedingsfthethir teenthACM confeenceon Hyper-
textand hypemedia, pagesl72-181. ACM Press,2002.

R. Bird and P. Wadler. Intr oductionto Functional Programming. Prentice Hall, 1998.

M. Boshemitsan and M. Downes. Visual programming languages: A survey

http://www.cs.berkeley.edu/~maratb/cs263/paper.pdf

D. F. Brailsford. Separablényperstiucture and delayedlink binding. ACM Computing
Surveys31(4es):30,1999.

T. Brailsfod, D. Martin, A. Moore, C. Stewat, and H. Ashman. Links for leam-
ing: linking in an adaptiveleaming environment. AdvancedTechnologjor Learning,
1(4):221-226, 2004.

C. Brooks, M. S. Mazer, S. Meeks, and J. Miller. Application-speci ¢ proxy sewers
asHTTP streamtransducers.In Proceedingsef the 4th Inter national World Wide Web
Conference pagess39-548, December1995.

V. Bush. Aswe maythink. TheAtlantic Monthly, 176(1):101-108, July 1945.

B. Campbell and J. M. Goodman. HAM: a general-purposehypertext abstractma-
chine. In Proceedingfthe ACM confeenceon Hypertext, pages21-32. ACM Press,
1987.

L. Carr, W. Hall, and D. De Roure. The evolution of Hypertext link sewices. ACM
ComputerSurveys.31(4es):9, 1999.

L. A. Carr, D. C. De Roure, W. Hall, and G. J. Hill. The Distributed Link Sewice:
A tool for publishers,authors and readers.In Proceedingsf the Fourth Inter national
World Wide WebConference pages647-656, 1995.

J. Clark. XSL transfomrmations (XSLT) version 1.0. http://www.w3.0rg/TR/xslt
November 1999. W3C.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

REFERENCES 218

The ApacheCocoon project. http://cocoon.apache.org/

H. Davies,S. Reich,and D. Millard. A proposalfor acommon navigationalhypernext
protocol. In Proceedingsf the 3.5 OpenHypemedia Systemw/orking group meeting
1997.

H. C. Davies, D. E. Millard, S. Reich, N. Bouvin, K. Grgnbeaek, P. J. Nurnberg,
L. Sloth, U. K. Wiil, and K. Anderson. Inter operability betweenHypermedia systems:
the standadisation work of the OHSWG. In Proceedingsfthetenth ACM Conference
on Hypertext and Hypemedia: returning to our diverseroots pages201-202. ACM

Press,1999.

H. Davis. To embedor not to embed.... Communicationsofthe ACM, 38(8):108—
109, 1995.

H. Davis,A. Lewis,andA. Rizk. OHP: A draft proposalfor astandad Open Hyperme-
dia Protocol. In Proceedingsf the secondnter national workshomn OpenHypemedia
Protocal pages27-53, 1996.

H. C. Davis. Referential integrity of links in open hypemediasystems.In Proceedings
oftheninth ACM confeenceon Hypertext and hypemedia: links, objectstime and space
— structurein hypemedia systempages207-216. ACM Press,1998.

H. C. Davis. Hypertext link integrity. ACM Computing Surveys31(4es):28, 1999.

D. C. De Roure,N. G. Walker, andL. A. Carr. Investigatinglink sewiceinfrastructures.
In Proceedingsf the eleventhACM on Hypertext and hypemedia, pages67—76. ACM
Press,2000.

P. DeBra, G.-J. Houben, and H. Wu. AHAM: a Dexter-basedreference model for
adaptive hypemedia. In Proceedingsf the tenth ACM Conferenceon Hypertext and
Hypemedia: returning to our diverseroots pagesl47-156. ACM Press,1999.

S. DeRose,E. Maler, and D. Orchard. XML linking language(XLink) version1.0.
http://www.w3.0rg/TR/xlink/ , June2001. W3C.

D. DeRoure, L. Carr, W. Hall, and G. Hill. A distributed hypemedialink sewice. In
Proceedingsf the thir d inter national workshomn sewicesn distributed and networked
environments pagesl56-161, June 1996.

[33]

[34]

[35]

[36]

[37]
[38]
[39]

[40]

[41]

[42]

[43]

REFERENCES 219

D. De Roure, S.El-Beltagy, L. Carr, andW. Hall. A distributed link sewiceusingquery
routing. In Proceedingsf the postersessionf the 8th international WWW confeence
May 1999.

R. Fielding, U. Irvine, J. Gettys, J. Mogul, H. Frystyk, L. Mas-
inter, P Leach, and T. Bemers-Lee. HTTP speci cations.

http://www.w3c.org/Protocols/Specs.html . W3C.

A. M. Fountain, W. Hall, I. Heath, and H. C. Davis. Microcosm: an open model for
hypemediawith dynamiclinking. In ProceedingsfECHT: Hypertext: Conceptssystems
and applications pages298-311, 1990.

F. Garzotto, L. Mainetti, and P. Paolini. Adding multimedia collectionsto the Dexter
model. In Proceedingsfthe1994 ACM Europeanconfeenceon Hypemediatechnology
pages/0-80. ACM Press,1994.

The GCC compiler project. http://gcc.gnu.org/
Goate. http://www.codebunny.org/research/goate/
Google APIs. http://www.google.com/apis/

S. Goose, A. Lewis, and H. Davis. OHRA: Towards an open hypemedia reference
architecture and a migration path for existing systems.Joumal of Digital Infor mation,
1(2), 1997. http://jodi.ecs.soton.ac.uk/Articles/v01/i02/Goose/

K. Grgnbaek. Compositesin a Dexter-basedHypermedia framework. In Proceedings
of the 1994 ACM Europeanconfeenceon Hypemedia technologypages59-69. ACM
Press,1994.

K. Grgnbaek,N. O. Bouvin, and L. Sloth. Designing Dexter-basedHypermedia ser
vicesfor the World Wide Web. In Proceedingef theeighthACM confeenceon Hyper-
text, pagesl46-156. ACM Press,1997.

K. Grgnbaek,L. Sloth, and P. @rbaek. Webvise:Browserand proxy support for Open
Hypermediastructuring mechanism®on the WWW. In ProceedingsftheEighth World
Wide WebConference pages253-268, 1999.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

REFERENCES 220

K. Grgnbaekand R. H. Trigg. Design issuesfor a Dexter-basedHypermedia system.
In Proceedingsfthe ACM confeenceon Hypertext, pages191-200. ACM Press,1992.

K. Grgnbesekand R. H. Trigg. Toward a Dexter-basedmodel for open hypemedia:
Unifying embeddedreferencesand link objects. In Proceedingef thethe seventtACM
confeenceon Hypertext, pages149-160. ACM Press,1996.

M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen. SOAP
version1.2 part 1. Messagingframework. http://www.w3.0rg/TR/soap12- partl/ ,
June2003. W3C.

F. G. Halasz. Re ections on Notecards: sevenissuesfor the next generation of hy-
pemmediasystems.In Proceedingfthe ACM confeenceon Hypertext, pages345-365.
ACM Press,1987.

F. G. Halasz, T. P. Moran, and R. H. Trigg. Notecards in a nutshell. In Proceed-
ingsofthe SIGCHI/GI confeenceon Human factorsin computingsystemand graphics
interface pages45-52. ACM Press,1987.

F. G. Halaszand M. Schwatz. The Dexter Hypertext referencemodel. Communica-
tionsofthe ACM, 37(2):30-39, 1994.

W. Hall, G. Hill, andH. Davis. The Microcosmlink sewice. In Proceedingefthe fth
ACM confeenceon Hypertext, pages256—-259. ACM Press,1993.

L. Hardman, D. C. A. Bulterman, and G. van Rossum. The Amsterdam hypemedia
model: extending Hypertext to support *r eal* multimedia. Hypemedia, 5(1):47-69,
May 1993.

L. Hardman, D. C. A. Bulterman, and G. van Rossum. Links in hypemedia: the
requirementfor context. In Proceedingsfthe fth ACM confeenceon Hypertext, pages
183-191. ACM Press,1993.

L. Hardman, P. Schmitz, J. vanOssenbuggen, W. ten Kate,and L. Rutledge. The link
vs. the event: Activating and deactivatingeventsin time-basedhypemedia. The New
Reviewof Hypemedia, 6:88-109, 2000.

E. R. Harold andW. S. Means. XML in a nutshell O'Reilly, 2001.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

REFERENCES 221

Haskell. http://www.haskell.org

P. Hayesand J. Pepper Towards an integrated maintenanceadvisor In Proceedingef
thesecon@nnual ACM confeenceon Hypertext, pagesl19-127, New York, NY, USA,
1989. ACM Press.

G. Hill, R. Wilkins, and W. Hall. Open and recon gurable hypemedia systems:A
Iter -basedmodel. Hypemedia, 5(2):103-118, 1993.

J. J. Leggett and J. L. Schnase.Viewing Dexter with open eyes. Communicationsof
theACM, 37(2):76—-86, 1994.

P. H. Lewis, H. C. Davis, S. R. Grif ths, W. Hall, and R. J. Wilkins. Media-based
navigation with generic links. In Proceeding®f the the seventhACM confeenceon
Hyperext, pages215-223. ACM Press,1996.

C. C. Marshall and I. Frank M. Shipman. Spatial hypertext: designing for change.
Communicationsofthe ACM , 38(8):88—-97, 1995.

D. Martin and H. Ashman. Goate: An infrastructure for new Web linking. In Proceed-
ingsofthe OpenHypemedia System@/orkshoppagesl9-25, 2002.

D. Martin and H. Ashman. Goate: XLink and beyond. In Proceedingsfthethir teenth
ACM confeenceon Hypertext and Hypemedia, pagesl42—-143. ACM Press,2002.

D. Martin, M. Truran, and H. Ashman. Approachesfor cachingwith content altering
HTTP proxies. In Proceedingsftheinternational IEEE ICIT A confeence November
2002.

D. Martin, M. Truran, and H. Ashman. Implementing conceptual linking on
today's web. In Proceedingf the Auswebinternational confeence July 2002.
http://ausweb.scu.edu.au/aw02/papers/edited/truran/

D. Martin, M. Truran,andH. Ashman.The end-point isnot enough. In Proceedingsf
the fteenth ACM confeenceon hypetextand hypemedia, pagesl28-129. ACM Press,
2004.

H. Maurer. Hyper-G now Hyperwave: The next generation Web solution. Addison-
Wesley 1995.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

REFERENCES 222

M. J. McGuf n and m. c. schraefel. A comparisonof hyperstiuctures: zzstructures,
mSpacesand polyarchies. In Proceedingef the fteenth ACM confeenceon Hypertext
& hypemedia, pagesl53-162. ACM Press,August 2004.

N. Meyrowitz. Intermedia: The architecture and construction of an object-oriented
hypemedia systemand applicationsframework. In Conferenceproceedingsn Object-
orientedprogramming system#anguagesand applications pagesl86—201. ACM Press,
1986.

D. E. Millard, L. Moreau,H. C. Davis, and S. Reich. FOHM: afundamental open
hypertext model for investigatinginteroperability betweenhypertext domains. In UK
Conferenceon Hypertext, pages93-102. ACM Press,2000.

A. Moore and T. Brailsford. Unied hyperstiuctures for bioinfor matics: Es-
caping the application prison. Joumal of Digital Infor mation, 5(1), 2004.
http://jodi.ecs.soton.ac.uk/Articles/v05/i01/Moore/

A. Moor e, T. Brailsford, and C. Stewat. Personallytailored teachingin WHURLE us-
ing conditional transclusion.In Proceedingsfthetwelfth ACM confeenceon Hypertext
and Hypemedia, pagesl63-164. ACM Press,2001.

A. Moor e, J. Goulding, T. Brailsford, andH. Ashman.Practicalapplitudes:casestudies
of applicationsof the ZigZag hypemediasystem. In Proceedingsfthe fteenth ACM
confeenceon hypetext and hypemedia, pagesl43-152. ACM Press,2004.

A. Moore, C. Stewat, D. Martin, T. Brailsford, and H. Ashman. Links for leaming:
linking in an adaptiveleaming environment. In Proceedingsfthe IASTED interna-

tional confeenceon Web-basedducation pages390-395, 2004.

T. H. Nelson. Complex information processing:a le structure for the complex, the
changing and the indeterminate. In Proceedingsfthe 1965 20th national confeence
pages84-100. ACM Press,1965.

T. H. Nelson. Literar y Machines Mindfull Press,1992.

T. H. Nelson. Managing immensestorage. Bytemagazing 13(1), Januar 1998.

[77]

[78]

[79]

[80]

[81]

[82]

[83]
[84]
[85]

[86]

[87]

[88]

REFERENCES 223

T. H. Nelson. A cosmology for a different computer universe:Data model, mecha-
nisms,virtual machineand visualizationinfrastructure. Joumal of Digital Infor mation,
5(1), 2004. http://jodi.ecs.soton.ac.uk/Articles/v05/i01/Nelson/

S.R. Newcomb, N. A. Kipp, and V. T. Newcomb. The “Hytime”: hypemedia/time-
baseddocument structuring language. Communicationsof the ACM, 34(11):67-83,
1991.

P. J. Nurnberg and J. J. Leggett. A vision for Open Hy-
pemedia Systems. Joumal of Digital Information, 1(2), 1997.

http://jodi.ecs.soton.ac.uk/Articles/v01/i02/Nurnberg/

ISO 7498, Open System Inter connection model.
http://www.acm.org/sigs/sigcomm/standards/iso_stds/OSI_MODEL/ . 1SO.
K. @sterbye and U. K. Wiil. The ag taxonomy of open hypemedia systems. In

Proceedingsfthethesevent\CM confeenceonHypernext, pagesl29-139. ACM Press,
1996.

K. R. Page,D. Cruickshank,and D. D. Roure. Its about time: Link streamsascontin-
uous metadata. In Proceedingsf thetwelfth ACM confeenceon Hypertext and Hyper-
media, pages93-102. ACM Press,2001.

Perl. http://www.perl.com
Privoxy. http://www.privoxy.org/
Project Xanadu. http://www.xanadu.com .

A. Rizk and L. Sauter Multicard: an open hypemedia system. In Proceedingsf the
ACM confeenceon Hypertext, pages4—10. ACM Press,1992.

F. M. Shipman,Ill, H. Hsieh, P. Maloor, and J. M. Moore. The visual knowledge
builder: a secondgeneration spatialhypertext. In Proceedingsfthetwelfth ACM con-
ferenceon Hypertext and Hypemedia, pagesl13-122. ACM Press,2001.

B. Shneideman and G. Kearsley Hypertext Hands-On! An Intr oductionto a New Way
of Organizing and Accessingnfor mation. Addison-Wesley 1989.

[89]

[90]

[91]

[92]

[93]

[94]

[95]
[96]
[97]

[98]

[99]

[100]

REFERENCES 224

W. Stallings. Data and computercommunications Prentice Hall, 2000.

N. Streitz, J. Haake,J. Hannemann,A. Lemke, W. Schuler H. Schitt, and M. Thring.
SEPIA: a cooperativehypemedia authoring environment. In Proceedingefthe ACM
confeenceon Hypertext, pagesl1-22. ACM Press,1992.

R. H. Trigg and K. Grgnbaek. Heterogeneity, structure, and CSCW: Threechallenges
for open hypemedia. In Proceedingef the 3rd workshomn OpenHypemedia Systems
pagesl31-136, 1997.

R. H. Trigg and K. Grgnbaek. A straw model for link traversalin open hypemedia
systems.In Proceedingef the 4th workshomn OpenHypemedia Systempagess9-62,
1998.

M. Truran, D. Martin, and H. Ashman. Goate, anyone? In Proceedingsf the poster
sessionf the fourteenthACM confeenceon Hypertext and Hypemedia. ACM Press,
2003.

H. Van Dyke Pamunak. Don't link me in: setbasedhypemediafor taxonomic reason-
ing. In Proceedingefthethird annual ACM confeenceon Hypertext, pages233-242.
ACM Press,1991.

W3C. SGML resources. http://www.w3.org/MarkUp/SGML/ .
W3C. The XPath speci cation. http://www.w3.org/TR/xpath |, 1999.
W3C. The XPointer speci cation. http://www.w3.0rg/TR/xptr- xpointer/ , 2002.

M. J.Weal,D. E. Millard, D. T. Michaelides,and D. C. De Roure. Building narrative
structuresusing context basedlinking. In Proceedingsfthetwelfth ACM confeenceon
Hypertext and Hypemedia, pages37-38. ACM Press,2001.

H. Weinreich, H. Obendorf, and W. Lamersdoif. The look of the link - conceptsfor
the userinterfaceof extendedhyperlinks. In Proceedingef thetwelfth ACM confeence
on Hypertext and Hypemedia, pages19-28. ACM Press,2001.

E. J. Whitehead, Jr. Unifor m comparisonof datamodelsusing containment modeling.
In Proceedingsf the thir teenthACM confeenceon Hypertext and hypemedia, pages
182-191. ACM Press,2002.

[101]

[102]

[103]

[104]

[105]

REFERENCES 225

U. K. Wiil, D. L. Hicks, and P. J. Nurnberg. Multiple open sewices:a nhew approach
to sewice provision in open hypemedia systems. In Proceedingsf the twelfth ACM
confeenceon Hypertext and Hypemedia, pages83—-92. ACM Press,2001.

U. K. Wiil and J. J. Leggett. The HyperDisco approachto open hypemedia systems.
In Proceedingsf thethe seventtACM confeenceon Hypertext, pages140-148. ACM
Press,1996.

H. Wu, E. deKort, and P. De Bra. Designissuedor general-purposeAdaptive Hyper-
media systems.In Proceedingsfthetwelfth ACM confeenceon Hypertext and Hyper-
media, pagesl41-150. ACM Press,2001.

Y. Yamamoto, K. Nakakoji, and A. Aoki. Spatialhypertext for linearinfor mation au-
thoring: Interaction designand systemdevelopmentbasedon the art designprinciple.
In Proceedingsf the thir teenthACM confeenceon Hypertext and Hypemedia, pages
35-44. ACM Press,2002.

P. T. Zellweger, A. Mangen, and P. Newman. Readingand writing uid hypertext nar
ratives. In Proceedingsf thethir teenthACM confeenceon Hypertext and hypemedia,
pages45-54. ACM Press,2002.

226

APPENDIX A

PUBLISHED WORK

This appendixcontainscopiesof publishedwork arisingfrom this reseach.

	Title
	Contents
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Hypermedia overview
	1.2 Research focus
	1.3 Structure of the work

	2 Hypermedia behaviours and experiences
	2.1 Overview
	2.2 Terminology
	2.3 Nodes
	2.4 Link structures
	2.5 Link actions
	2.6 Anchors & Spans
	2.7 Triggers
	2.8 Composites & Documents
	2.9 Open Hypermedia
	2.10 Conclusion

	3 Modelling hypermedia implementation
	3.1 Overview
	3.2 Related work
	3.3 High/low model
	3.4 Nottingham model
	3.5 SLIPA
	3.6 Meles
	3.7 Conclusion

	4 Goate
	4.1 Development history
	4.2 Development
	4.3 Goate architecture
	4.4 Operation as a HTTP proxy
	4.5 Retrieve modules
	4.6 Join modules
	4.7 Language modules
	4.8 Environment modules
	4.9 Optimisation
	4.10 Conclusion

	5 Atomic Hypermedia
	5.1 Introduction
	5.2 Atomic Data Structure
	5.3 Atomic Hypermedia
	5.4 ZigZag
	5.5 Conclusion

	6 Hedgehog
	6.1 Overview
	6.2 Data types
	6.3 Structure
	6.4 Filter
	6.5 Orderings
	6.6 Conditionals
	6.7 Altering content
	6.8 Standard functions
	6.9 Examples
	6.10 Conclusion

	7 Conclusion
	7.1 Modelling hypermedia implementation
	7.2 Node-less hypermedia
	7.3 Further work

	References

