
Modelling Hypermedia Implementation
and Node-lessHypermedia

by Duncan Martin, BSc

Thesissubmitted to The University of Nottingham

for the degreeof Doctor of Philosophy,May 2005

ii

Contents

1 Intr oduction 1
1.1 Hypermediaoverview 1
1.2 Research focus 4
1.3 Structure of the work 6

2 Hyper media behaviours and experiences 8
2.1 Overview 8
2.2 Terminology 8
2.3 Nodes 11
2.4 Link structures 12
2.5 Link actions 18
2.6 Anchors& Spans 22
2.7 Triggers 31
2.8 Composites& Documents 38
2.9 Open Hypermedia 46
2.10 Conclusion 50

3 Modelling hypermedia implementation 51
3.1 Overview 51
3.2 Relatedwork 52
3.3 High/low model 60
3.4 Nottingham model 63
3.5 SLIPA 66
3.6 Meles 76
3.7 Conclusion 105

4 Goate 106
4.1 Development history 106
4.2 Development 111
4.3 Goatearchitecture 118
4.4 Operation asa HTTP proxy 125
4.5 Retrievemodules 133

CON TEN TS iii

4.6 Join modules 134
4.7 Languagemodules 135
4.8 Environment modules 142
4.9 Optimisation 146
4.10 Conclusion 147

5 Atomic Hyper media 149
5.1 Intr oduction 149
5.2 Atomic Data Structure 151
5.3 Atomic Hypermedia 161
5.4 ZigZag 170
5.5 Conclusion 173

6 Hedgehog 174
6.1 Overview 174
6.2 Data types 175
6.3 Structure 179
6.4 Filter 184
6.5 Orderings 191
6.6 Conditionals 199
6.7 Altering content 200
6.8 Standard functions 201
6.9 Examples 202
6.10 Conclusion 209

7 Conclusion 211
7.1 Modelling hypermedia implementation 211
7.2 Node-lesshypermedia 213
7.3 Further work 214

References 216

A Published work 226

Abstract

This thesisaddressesseveralareasin the �eld of hypermedia research. First the core

conceptsof hypermedia,nodes,links etc. are examinedand in eachcaseexistingwork

is considered along with new conceptsin order to form a standardisedtoolkit.

Secondly, the modelling of hypermedia implementation is considered. In this sec-

tion the developmentof a modelling schemeis tracedand the advantagesand disad-

vantagesof eachapproachare discussed.

Thir dly, a particular systembasedon thesemodels, Goate, is intr oduced. The

design, usefulnessand drawbacksof Goate are discussed.Someexamplesof linking

speci�cationsimplementedwith Goateare given and discussed.

Fourthly, an entirely dif ferent way of modelling hypermedia that doesn't rely on

the concept of a node is intr oduced. This approach, namedAtomic Hypermedia, is

basedaround the single data construct of an atom, where eachatom holds a single

character.

Lastly, a languagenamedHedgehog is intr oduced which is designedfor the ma-

nipulation of Atomic Hypermedia. This sectiondetails the motivation and structure

of Hedgehog, aswell asproviding examplesof operationson Atomic Hypermedia.

iv

Acknowledgements

I would like to thank my supervisor, Helen Ashman, for commentsand suggestions

throughout my research. Also, the membersof the Web TechnologyResearch Group

aswell asother research groups at Nottingham University for their contributions in

discussionsand shared knowledge. I would also like to acknowledgemy parents for

their support throughout my education and all the authors of the freely provided

software I've relied on throughout my research.

I would particularly like to single-out for thanksSarahByrne, not only for putting

up with meduring my writing-up phasebut alsofor her tir elessproof-readingthrough-

out my research. Thesethanksshould be extendedby anyonewho readssomething

I've authored.

This work wasfunded by the EPSRC,grant number 20164.

v

To my parents.

vi

1

CH APTER 1

I N T RO D U CT I O N

1.1 Hyper media overview

Hypertext asa concept was�rst proposedby VannevarBush in “As we may think”

[17]. In this now classicwork Bush takesa forward-looking approach to the devel-

opment of information technology. Although somepredictions havenot come true,

such asthe widespreadhome useof micro�lm, the work is notable for the concepts

that it intr oduces.In the article Bush describesthe `memex':

“A memexis adevicein which an individual storeshis books, records,and
communications, and which is mechanisedso that it may be consulted
with exceedingspeedand �exibility . It is an enlarged intimate supplement
to his memory.”

Bush intr oducesthe idea of `associatedstorage' where items in the memex can

be `tied' or 'linked' together, representingsomesemanticconnection. Furthermore,

the path of links taken by a userthroughout the memex,or `trail', canbe stored and

recalled.Bush toucheson other issuessuchasannotation and sharingof information

with other users.The conceptsintr oducedhere havepersistedin hypermediaresearch

to this day.

Although Bushintr oducedmanyof the core ideasof hypertext, it wasNelson who

intr oduced the term itself. In “Complex information processing:a �le structure for

the complex, the changingand the indeterminate” [74] Nelson states:

“Let me intr oduce the word `hypertext' to mean a body of written or
pictorial material interconnectedin sucha complex way that it could not

1. I N TROD U CTI ON 2

conveniently be presentedor representedon paper. It may contain sum-
maries, or maps of its contents and their interrelations; it may contain
annotations, additions and footnotes from scholarswho have examined
it.”

Theodore Nelson's de�nition of hypertext includes non-text media such aspic-

tures.The term `hypermedia' is alsooriginally coined by Nelson in [74]:

“Films, sound recordings, and video recordings are alsolinear strings,ba-
sically for mechanicalreasons. But these, too, can now be arranged as
non-linear systems— for instance,lattices— for editing purposes,or for
displaywith dif ferent emphasis.. . . The hyper�lm — a browsableor vari-
sequencedmovies— is only one of the possiblehypermedia that require
our attention.”

In this thesisthe terms `hypertext' and `hypermedia' are considered to be inter-

changeable,although the term `hypermedia' is preferred asthe focus is on working

with variousmedia types.

1.1.1 Hypermediadomains

Sincethe earlywork of BushandNelsonhypermediaresearch hasprogressedin several

directions. Someresearch hasfollowed the conceptsjust discussed,and focuseson

explicit associativeconnectionsbetweenparts of a mediastore. Other work hasbeen

quite dif ferent in conceptbut hasbeenacceptedunder the banner term of hypertext

or hypermedia. Before the scopeof this work can be accuratelydiscussedit is �rst

necessary to considerthe `domains' of hypermedia.

1.1.1.1 Navigational hypermedia

Navigational hypermedia is the domain of hypermediabearingclosestresemblanceto

the ideasof Bush and Nelson. In this domain there is a store of media, the items

of which canbe joined, or `linked' together in someway. Activating the links affects

the user's `view' onto the hypermedia. A common behaviour is that activating a

link would move the view onto the hypermedia from one point to another. Other

behavioursthat are included in the navigational domain are the inclusion, removal

1. I N TROD U CTI ON 3

or replacementof part of the view. Thesebehavioursare discussedfurther in section

x2.5.

1.1.1.2 Sculptural hypermedia

Sculpturalhypermedia is a variation of navigationalhypermedia. Traditionally in nav-

igational hypermedia nodesare not connectedby default but explictly connectedby

the creation of links. In Sculpturalhypermediaall nodesare connectedby default and

then connectionsare removedto form the result in the manner of an artist creating

a sculpture by removing unwanted material. Two papersbasedaround this ideawere

presentedin the 2001 Hypertext conference, [10] and [98]. The term `sculptural

hypertext' wascoined by [10] and hasbeenthe term that haspersisted.

1.1.1.3 Spatial hypertext

In Spatialhypertext connectionsbetweennodesare not expressedby the de�ning of

links, but rather the relativespatialpositions of nodes,and visualcues. For example,

a common colour appliedto setof nodeswould imply a connection, aswould placing

the nodes next to one another or overlapping them. A key phrasehere is `imply',

as connections between nodes are implied by the user and not speci�ed explicitly.

Severalspatialhypertext systemshavebeen developedsuch asART#001 [104] and

VKB [87].

Spatialhypertext “ is mostappropriate whenthere is no distinction betweenreaders

and writers” [60].

1.1.1.4 Taxonomichypermedia

A usefulde�nition of Taxonomichypermedia is:

“T raditionally, hypermediais implementedaccording to aconceptualmodel
basedon graphtheory. That is, the userthinks of the information asstored
at the nodesof a graph, and movesfrom one node to the next over edges
of the graph. This conceptualmodel is appropriate for knowledge tasks
in which one node explains, ampli�es, or otherwise elucidatesanother.
. . . For another kind of knowledge task a dif ferent conceptual model is

1. I N TROD U CTI ON 4

more appropriate, a model basedon settheory. This model facilitatesma-
nipulation of collectionsof similar nodesthat are assignedto one or more
sets.Usersmove from one node to another in the sameset,and from one
set to another by way of nodesin the intersection of those sets.They do
not think of nodesaslinked directly to one another, but in terms of the
setsto which they belong.” [94]

Taxonomic hypermediaallowscategorisationand sub-categorisationof nodes(or

`artifacts') [69]. Additionally, `perspectives'may be de�ned, for exampleunder per-

spectiveA anartifact appearsunder category Y whilst under perspectiveB the artifact

appearsunder category Z .

1.2 Research focus

The focusof this work is the implementation of systemsrelating to navigationalhyper-

media. Navigational hypermedia waschosenbecauseit is the domain of the original

conceptsof hypermedia, representsthe greatestbody of work in the subject and is

the most widely used;simply becausethe WWW is a navigationalhypermediasystem.

Throughout this thesisthe term hypermediareferssolelyto navigationalhypermedia.

This thesiscoverstwo research areas:systemimplementation and node-lesshyper-

media. This research areasmay seemdistinct, when in fact they are both branches

from a single line of research. In sectionx1.3 the relationshipbetweentheseareasis

brie�y expandedupon.

1.2.1 Systemimplementation

The �rst area of research concerns developmentof a model for the implementation

of hypermedia behavioursand systemswhich supports them. This modelling should

emphasisethe production of �exible and expandablesystems.The �exibility and ex-

tendibility has severalaspects. The primary concern is the ability for a systemto

processa rangeof link speci�cation languages,and the waysin which links from these

languagescanbe brought together. There is alsoa requirement for the designto sup-

port the full-range of linking behaviours.Supplementalareasof research include the

1. I N TROD U CTI ON 5

designbeing able to support the processingof arbitrary media types,e.g. in addition

to text, alsosupporting systemswhich processimages,video etc. Finally, the research

should considerhow asysteminterfaceswith the user, and what role should be played

by client applicationswhich interfacewith the system. The research aims towards a

designwhich allowsa rangeof client applicationsto be used.

Whilst the designis the centralpart of this research area,this thesisalsocoversthe

core conceptualbuilding blocksand standardisesthem asa foundation for the design.

The research alsocoversan implementation of the designideaspresentedand shows

how the principlescanbe applied.

Sincethe focus of this research is on the implementation of hypermedia systems,

there are someareasof navigationalhypermediaresearch which are beyond the scope

of this work:

� The structure of a given hypermediaitself. It doesnot matter if the hypermedia

is structured asa hierarchy, lattice, zzStructure [72] or other datastructure. the

relativemerits/disadvantagesof anyof thesestructuresare not discussed.

� Usability issues.Factorsregarding what makesa hypermediamore or lessuseful

in terms of its content or form are not considered.

� Linking languageevaluation. The research does not consider whether partic-

ular link speci�cation methods are sensibleor inferior/superior to any others.

For example,the research doesnot considerwhether XLink [31] is a sensible

link speci�cation method, only how speci�cationssuchasXLink can be imple-

mented.

1.2.2 Node-lesshypermedia

Navigational hypermedia consistsof a number of nodes1, with eachnode holding a

sectionof content. The secondareaof research presentedin this thesisintr oducesan

approachto navigationalhypermediawhich doesnot feature the conceptof the node.

1The terminology variesbetweendiscussions,seesectionx2.3 for more information.

1. I N TROD U CTI ON 6

There are a number of reasonsto investigatesuch an approach, which are discussed

in sectionx5.1.1.

When consideringa node-lessapproach a new data-structure must be developed

to allow the storageof the content of the hypermedia. This data-structure must have

aclearlyde�ned setof rulesandbehaviourswhich preservethe intentions of the node-

lessapproach.

Having developeda core set of rules for such an approach there is a need for a

wayof manipulating the hypermediastructure. The research in this sectionconsiders

a programming languagefor manipulating node-lesshypermedia.

1.3 Structur e of the work

It isperhaps�tting that a thesisrelating to hypermediaresearch should itself be largely

non-linear in nature. A hypermedia would allow linking betweendistinct sectionsto

allow the readerto move from one part of the work to another which is connected

in some way semanticallybut not spatially adjacent. This effect is, unfortunately,

unavailablefor a printed thesis. Instead this thesisreliesheavily on section markers

to provide uni-dir ectional, un-typed links to other parts of the work. Sectionmarks

are shown in parenthesisafter the mention of a concept which is expandedupon or

discussedin another context in someother part of the document, e.g. “ An improved

modelof spans(x3.6.13.2) would avoid this issue.”

Chapter 2 examinesthe core conceptsof hypermedia. In this chapter the com-

ponent parts of hypermedia, e.g. nodes, links, anchorsetc., are discussed,dif fering

viewson theseparts are intr oduced and asmuch aspossible,a common view of the

componentsis speci�ed.

Chapter 3 discussesthe modelling of hypermedia from the point of view of im-

plementation. The chapter discussessome related work before intr oduction the

High/Low , Nottingham, SLIPA and Meles models. The description of eachmodel

includesthe aimsand shortcomings of the approach. Thesemodels were developed

at varioustimes over the lifespanof the research and so someof them haveobvious

shortcomings when compared againstthe standard viewspresentedin chapter 2. It

1. I N TROD U CTI ON 7

should be remembered that chapter 2 presentsonly the �nalised modelling of hy-

permedia concepts2 and that thesestandardisationswere not availablefor the whole

period of the research discussedin chapter3.

Chapter 4 discussesGoate, a hypermedia application which allows rapid imple-

mentation of new linking languages. The implementation of Goate has, in many

ways,been the driving force behind the research by highlighting practical issuesfor

hypermediasystems.Asthe scopeof Goateincreasedthe requirement for astructured

solution spurred developmentof the modelsin chapter3 which in turn dependedon

the standardisedmodelling of 2. Whilst the work resulting from this research should

be considered bottom-up, the motivation hasbeen top-down. Although it wasthe

increasein the scopeof Goate which spurred the development of models, the im-

provementsto Goate itself could only be implemented basedon �nalised modelling.

Therefore, Goatehasoften beenbehind the modelling inspired by its development.

In addition to the relationship between chapters2, 3, 4 this work contains a

branch. Section3.5.8 highlights severalissueswith aparticular model of `spans'in hy-

permedia. The remainderof chapter3 describesan improved model which, amongst

other things, avoids theseproblems. However, at this point the research also con-

sidered an alternative, lessconventional solution. The development of these ideas

evolvedinto Atomic Hypermedia.

Atomic Hypermedia describesan approach to hypermedia which omits one of

the commonly acceptedconcepts,that of the `node'. In chapter 5, the motivation,

principlesand operation (in an abstractedsense)of Atomic Hypermedia is described

and in chapter6 a processinglanguagefor Atomic Hypermedia is described.

Finally, note that this thesis does not have a dedicated `related work' chapter.

Insteadrelevantresearch is intr oducedat variousstagesthroughout the discussion.

2To do otherwisewould be unnecessarilyconfusing.

8

CH APTER 2

H YPERM ED I A BEH AV I O U RS AN D

EXPERI EN CES

2.1 Overview

This chapter discussesindividual conceptsof hypermedia and providesa foundation

for the work on modelling in chapter3. However, note that this chapteronly discusses

the �nal versionof conceptmodelling and so not all of the ideaspresentedhere were

availablethroughout the time the modelsin chapter3 were being developed.

2.2 Terminology

The following sectionsexamineissuesregarding the modelling of behavioursacross

variousapproaches.This analysisservesseveralpurposes.Firstly, dif fering and com-

mon behaviourscan be identi�ed which can then be useda basisfor the modelling

describedin chapter3. Secondly, it is possibleto examineexisting terminology in or-

der to form a common vernacular. However, regarding this secondpoint, it is useful

to de�ne in advanceof other analysissomecommon terms in order to aid discussion.

To attempt to de�ne every term relating to hypermedia by examining existing work

would result in early de�nitions being unnecessarilycomplex and/or relying exces-

sivelyon forward-references.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 9

2.2.1 Pane

A `pane' is an independentareaof the user'sdisplay. The userof the application may

havemultiple panesdisplayedor only asinglepane.Panesare independentin that the

content of one panecanbe changedwithout affecting the content in other panes.

Each window in a multi-windowing environment would be considered a pane.

Note that within eachwindow there may be further subdivisionswhich function as

independentpanes,e.g. HTML framesets.

The exampleof awindow containing multiple panesisaspeci�c caseof the general

behaviourthat panesmaycontain panes.Considera (window) paneA which contains

two equalsizepanesB and C. If new content1 is targeted at paneB only half of the

window will show the new content, whilst if the new content is directed to paneA,

the whole window will show the new content.

2.2.2 View

A `view' is the hypermedia content of a pane. A view, unlike a document (x2.8.1),

is not necessarilya presetarrangementof content and may ariseasthe result of per-

forming linking actions on a previous view. For example,a user initially requestsa

document which becomesthe content of a pane. At this point the view corresponds

to the presetdocument. If the useractivatesa link that, for example,replacesa para-

graph of text, the view mayno longer correspondto a document.

2.2.3 Link

A link is an expressedconnection between areasof content in a hypermedia. The

meaningof the connection, the effect of the connection and the number and de�ni-

tion of the areasof content involved varies.
1The term `content' is usedhere simply asa generic term representingsomemedia with the hy-

permedia. This term is usedhere to avoid terms suchas`document', which are not accuratelyde�ned
until sectionx2.8.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 10

2.2.4 End-point

The `end-point' of a link is a placewhich is referred to, in somemanner, by a link.

For example,if a link changesthe view from content A to content B 2 the end-points

of the link are A and B. A link may havemore than two end-points asdiscussedin

sectionx2.4.

2.2.5 End-points in context

If a binary link — one that hastwo end-points — is considered, a common useof ter-

minology is `source' representingone end of the link, and `destination' representing

the other. This terminology hasbeenusedin [5] and other work.

However thesetermsare strongly associatedwith the ideaof one particular linking

action (x2.5) `traversal'where the current view is replacedwith a new view. However

for someactionssuchas`include' or `replace', theseterms are lesssuitable. For this

reasonthe terms `subject' and `object' are usedrepresentingthe two end-points of a

binary link. For example,if content A is replacedby content B then A would be the

subjectand B would be the object.

Note that the both of the terms`subject'and `object' canbe appliedto aparticular

item according to context. For example, a link structure (x2.4) may de�ne a bi-

directional traversallink betweenthe two points X and Y. If consideringthis action

from the point-of-view of X , X would be the subjectand Y the object, yet from the

point-of-view of Y, X would be the object and Y the subject.

2.2.6 Data-type terminology

Aspart of the discussionin this chapter, and throughout the thesis,a number of data-

typesare intr oduced. Thesetypesrepresentthe conceptsdiscussed.For example,the

type Nodewhich modelsa single item of mediaasdescribedin sectionx2.3.

In this chapter the data-typesare discussedin fairly general terms to illustrate

ownershipand hierarchy; in later section�ner detailsare provided.

2The common link action (x2.5) of traversal.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 11

Throughout this thesisobject-orientated terminology is used,so the Nodeclassis

referred to when discussingthe abstracteddata-typebut a Nodeobjectis referred to

whendiscussingan instanceof the Nodeclass.Functionsbelonging to aclassarecalled

`methods'.

It is entirely valid to implement a systembasedon the ideaspresentedthroughout

in a non-object-orientated language. Indeed, Goate (x4) is written in plain C asop-

posedto C++, and implementsthe classesdescribedwith vanilla structuresalongside

specialisedmanipulation libraries(x4.2.5).

2.3 Nodes

In hypermedia there is the core concept of a single item of media suchasa pieceof

text, image,structured graphicsor video clip to namejust a few possibletypes. This

section examinesthe terms usedto encapsulatethe concept of a constrained,single

item of mediaand how theseterms havebeenapplied.

Bush [17] did not refer to theseitems by a singlecommon name,using the terms

`records' and `items' primarily, but also referring to particular typessuch as`books'

and `communications'.

Nelson [75] usesa variety of terms depending on context. The hypermedia style

where readersmove from one item to another is describedas`chunk style' hyperme-

dia with eachitem being a `chunk'. When considering media stored in `xanalogical

storage' the term `unit' is used.However, the primary term usedby Nelson is `docu-

ment':

“A document consistsof anything that someonewishesto store. It is
designatedby somebodyto bea document; it may contain text, graphics,
links, or window-links — or any combination of these— that the owner
hascreated.”

This de�nition will later be shown to havegreatsigni�cance for the research.

The popular Dexter hypertext reference model3 [49] representsall data stored

within the hypermedia with the term `components'. Components which hold items

3The nameis reducedto “Dexter” throughout this thesis.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 12

of media— asopposedto links (x2.4) — or composites(x2.8) are `atom components'.

This term hasbeenpreserved by follow-on work suchas[45] and [51].

AHAM [30] is a model of adaptivehypertext basedon Dexter. In generaldis-

cussionsthe term `node' is usedhowever, for the model itself AHAM uses`concept'

re�ecting its adaptivefocus. This term is usedagainin paperssuchas[103].

Other terms include `elements'[104], `notecards' [48] and `documents'4 [68].

However the most popular term for this concept,`node', hasbeenfrequentlyused

in such discussionsas spatial hypertext [60], Thespis [10], HAM [18], the Fluid

Reader[105], Multicard [86], Sepia[90], Storyspace[11]. The traditional use of

the term `node' is in graph theory when referring to a location within a network. In

many casesa hypertext is representedasa network and so the term �ts. Sincethis is

such a widely-usedterm, thesediscussionspersistwith it, evenwhen the concept of

belonging to a network is not pertinent.

KMS [2] hasthe concept of `frames'. A frame is a “ screen-sized,two-dimensional

spacefor a node. . . containing any arrangementof text, graphicsand image items.”.

KMS usesthe terms `node' and `frame' largely interchangeably, e.g. “ What is thebest

sizefor a node?KMS �xes thesizeof a frame to a width of 1140 pixelsand a heightof

820 pixels.” However, framesin KMS are `richer' than in many other systemssince

they can contain multiple media types. In many waysthe KMS frame is closer to

the conceptof `composite' (x2.8) and the `items' in KMS correspondto a traditional

`node' de�nition.

2.4 Link structur es

The focusof this sectionis on the representationsof linking structure.

Notecards [48] hasa simplelinking structure where eachlink hastwo end-points.

Links are uni-dir ectional and typed. The `type' of a link is “ a user-chosenlabel spec-

ifying the natur e of the relationshipbeing represented”. Two link types are given as

examples,̀ support' and `source'. The subject end-point can be `anchored' at a par-

4This de�nition of documents dif fers from the Nelson one as it doesn't include the concept of
something being designateda document.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 13

FI GU RE 2.1: WHURLE link structures

ticular location but the object end-point refersto the card asa whole.

KMS [2] doesn't havethe concept of separatelink items, rather links are consid-

ered properties of text items. The entire text item is the subject end-point and an

entire framereferred to is the object. Links are uni-dir ectional.

WHURLE [71] takes its links from a number of sources. Firstly, links can be

declared aspart of the `skin' which stylesand framesthe hypermedia content. These

links are speci�ed asnormal HTML <a href> links. Secondly, `autonavigation' links

are formed basedon the structure of the hypermedia. For examplewhen viewing a

page,the side-barwill show autonavigation links to the children of the page,aswell

asto the parent of the page.Lastly, links canbe speci�ed in a linkbase.

WHURLE linkbasesare authored asXML documentsand support threedif ferent

link structures. The `single' link type is a bi-dir ectional link betweentwo end-points.

The `plural' link type consistsof an arbitrary number of end-points where there is

a bi-dir ectional link between every end-point combination. Lastly, the WHURLE

`hub' link type consistsof an end-point which is designatedthe `hub', and a number

of `satellite' end-points. Betweenthe hub and eachsatellite there is a bi-dir ectional

link, although end-points are not directly connectedto eachother. Thesetypesare

shown in �gur e 2.1.

Dexter [49] haslink objects that exist in the storagelayeras`components' in the

samewaythat nodesdo. A link component consistsof two or more `speci�ers'. Each

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 14

speci�er can be considered an end-point, in the generalisedsenseof the term. A

speci�er is acombination of ancomponent ID, anchor ID, direction and presentation

speci�cation. The combination of component ID and anchor ID refersto a particular

location in a node and is discussedfurther in sectionx2.6.

The direction attribute speci�es whether the speci�er should be considered the

end-point for the start of a link, the end of a link, both the start and end of a link,

or neither. By having multiple speci�ers links of arbitrary arity can be de�ned. For

example, a link component consisting of three speci�ers, two (A and B) with the

direction set to TOand one (C) set to FROMit is possibleto de�ne a link that has

multiple destinations.Note that this link would still behaveuni-dir ectionally; that is,

from C both A and B can be reachedbut from A or B no other end-points can be

reached.If A had its direction attribute set to BIDIRECTthen it would be possibleto

navigatefrom C to A and B and from A to B.

Dexter additionally speci�es the direction attribute of NONEfor speci�ers which

do not relate to a `source' or `destination' point. Hypercard buttons are given asa

possibleusefor this attribute, although the detailsare not elaboratedupon.

The presentationspeci�cation in each speci�er controls the presentationof the

end-point. The detailsof this type are not elaboratedon aspart of the model.

The Dexter model of link structure is interestingand�exible. However it is limited

in the range of link structures that it can model. Consider an attempt to model

the `hub' link type of WHURLE. If this structure wasmodelled in Dexter it would

be necessary to make the hub and satellitesof type BIDIRECTto allow navigation

betweenthem. However doing this would alsomakeit possibleto navigatebetween

the satellitesdirectly, turning the `hub' link into a `plural' link.

Having single link structuresrepresentingcomplex linking arrangementssuch as

in Dexter and WHURLE canbe usefulat the levelof link speci�cation asthe method

of speci�cation is semanticallycloseto the intent. However, if the emphasisis not on

the speci�cation of links but on modelling their effect, there is no needto standardise

on a fully expressivecomplex link structure.

Instead it is possibleto decomposeany complex link structure in a number of

simplebinary links [6], eachbeing asubject/object pair. In the caseof the WHURLE

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 15

Link
End-point End-point

FI GU RE 2.2: High-level linking structure

hub link this meansthat for the casewhere A is the hub and B, C and D are the

satellitesthere would be the pairsfor A-to-B , B-to-A, A-to-C, C-to-A, A-to-D and

D-to-A. This structure clearlyhasagreatdealof redundancy;A appearssix times,and

the author of the link hasmore work in terms of ensuring correctness,which would

not be necessary for a more specialisedform. However, sincethe motivation of this

work is in modelling the effect of links, this decomposition is a useful tool.

In further sectionsthe idea of a complex link-structure is used for the purposes

of discussion,under the term `high level link structure'. This structure is generalised

to simply a number of end-points. The relationshipbetweentheseend-points is not

elaboratedupon. Such a generalisedform containing two end-points is shown in

�gur e 2.2.

Although examining high-level link structuresis useful, the focus of this thesisis

on the implementation of linking, and from this perspectivethe decomposedbinary

form is more useful. A genericbinary form is shownin �gur e 2.3. Note that although

the two forms look similar in these�gur es, there are alreadysigni�cant dif ferences.

For the high-level form it is only possibleto saythat there are “a number of end-

points”; the exactnumber will depend not only the kind of link being represented,

but alsothe form the high-level structure takes. The useof two end-points in �gur e

2.2 is only an example.Additionally, the generichigh-level form cannot statewhether

the end-pointsare the subject,the object, or either dependingon context. The binary

form is more strongly de�ned; there are exactlytwo end-points, and the role of each

is de�ned evenin this very genericform.

Whilst the `subject' and `object' membersof the binary link form are link end-

points there will be dif ferencesbetweenthis end-point data-structure and the struc-

ture usedaspart of the high-level structure. For example,the end-point in the high-

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 16

Link
Subject Object

FI GU RE 2.3: Decomposedlinking structure

level form may contain extra information relating to the structure of the whole link-

ing object, e.g. the `direction' attribute in Dexter. Secondly, the distinction between

subject and object end-points meansthat there may be factors which apply to one

end-point but not the other. Although this may be true in either case,the fact that

the subjectandobject are clearlyde�ned in the binary casemeansthat the model itself

canre�ect thesedif ferences.An exampleof this is discussedin sectionx2.7.6.

Decomposed,binary, effect-driven link modelling formsthe core of the modelling

discussedthroughout chapter3.

2.4.1 Danglinglinks

It is possiblefor a link to havea singleend-point. At �rst this may not seemto make

sensebut there are occasionswhen it can occur. Firstly, a link may become`broken'

with one end-point no longer being valid due to the referencedposition being moved

or deleted. In this casewhilst the link may havetwo declared end-points, only one

actuallyexists.Secondly, a link may havea singleend-point becausethe secondend-

point is yet to be created[44]. Generally, links with a singleend-point are known as

`dangling links' [44] or `broken links' [27].

There are in fact two casesof dangling links; either the systemis aware of the

presenceof only asingleend-point or it isnot. An exampleof the �rst caseisdescribed

in [44], which discusseshow dangling links canbe usefulfrom asystempoint of view:

“First, they allow lazyupdating andgarbagecollection following node and
anchor deletion. This is useful when the link to be deleted (or modi�ed)
liveson another machineor is currently locked by another use.A second,
relatedsituation involvesdataobjectsoutside the control of the hyperme-
dia, for example,�les with component [(node)] needing to be moved or
deleted. Thir d, the dangling endpoint canbe `re-linked' or re-connected

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 17

to anothernode or anchorwithout having to rebuild the entire link (espe-
cially useful for multi-headed links). Finally, dangling links canbe created
intentionally asplaceholders when the desired endpoint node or anchor
doesnot yet exist.”

The WWW provides an exampleof the seconddangling link case,that where the

systemis unaware of a dangling link. The systemwill allow the userto click on a link

marker, or `trigger' (x2.7), and attempt to follow a link which hasno valid end-point.

Typically this resultsin an error pageif the referenceddocument doesn't exist at all,

or the top of the pageis shown if a speci�ed in-pagemarker doesn't exist. There are

a few solutions to this problem. [28] discussesseveralapproachesunder the headings

of “Detection & correction” and “Pr evention”. One method discussedemploys a

`spider' to checkdocument correctionsand removelinks from documentswhere the

destination is invalid. It would alsobe possibleto do this at a client level, with the

browsercheckingthe destinationexistsbefore un-presentingthe current pageor only

making the link markersavailableoncethey havebeencon�r med asbeing valid. There

are still problemswith this approach. In many casesa Web server doesnot return an

error code for invalid destinationsbut displaysa prede�ned pageand a spider/client

would not be ableto tell this from the intended content [6]. If this problem could be

solvedit would reducethe problemsof the WWW to that of the �rst classof dangling

link previouslymentioned.

Whilst a hypermediasystemmay be able to dealwith a dangling link, to a greater

or lesserextent, it is almost alwayspossible to create dangling links. Simply, if a

document can be modi�ed or deleted, it is possiblethat a link referring to it is no

longer valid [27]. One casewhere this isn't true isasystemsuchasXanadu[75] where

content isneverdeletedor modi�ed, but only supplementedwith anewversion.Once

published, that versionof document will not change,although there may be a newer

versionavailable.

2.4.2 Embeddedandexternallinking

Link speci�cations may be embeddedin one of the documents being referenced—

usually the start end-point — or stored separatelyfrom the document in somearbi-

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 18

trary format. Additionally, there may be a hybrid approach [25] where the spanis

embedded in the document and labelled. Externally stored links can then refer to

theselabelledspans.

There are advantagesand disadvantagesto eachapproach. From [27]:

“The advantagesof [the embedded]approachare:

� Simplicity. The links are encapsulatedwith the data,sowe maymove
the data around and edit it freely and, so long aswe do not break
the binding of the link to its associatedobject, all links from the
document will continue to function.

� Scalability. All the information about the link is right there with the
content; there is no needto refer to someexternal serviceto discover
the destination anchor(s).

However, there are disadvantagesto this approach. Only the node that
contains the link knows about the link. This meansthat such links can
only be uni-dir ectional, and it meansthat it is not easyto design tools,
such ashypertext browsersthat analysethe link network. The only way
that wecandiscoverthe link structure is to implement someprogram such
asaWeb crawlerwhich, givenastarting point, traversesall links that it can
�nd building the structure.”

In [42] Grønbæket al. comparesthe embeddedlinks of the WWW links againstthe

Dexter model and make the argument that external, Dexter-style links are superior.

Whilst this work doesnot seekto argue the superiority of either approach, [42] mis-

characterisesthe dif ferences.In particular, the papersetsup a `strawman' by treating

all embeddedlinks asbeing like those of the WWW, when although all WWW links

are embedded5, not all embeddedlinks are like the WWW (x4.7.3).

2.5 Link actions

This section examinesthe effect of activating a link, or what happensto the view

presentedto the user when a link is active. The behavioursidenti�ed here form a

basisfor the modelling presentedin sectionx3.6.1.

5Ignoring future widespreadadoption of client-sideXLink.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 19

The term `traversal'is usedin [48], [92] and [69] and othersasa generalterm for

the act of following a link. For the purposesof this work it is necessary to be more

speci�c regarding the preciseeffect of activatinga link.

The term traversalimplies a movement from one position — in the hypermedia

— to another, i.e. the existing view is completely left behind and a new view replaces

it. In the discussionshere, the term `traversal'is reserved for this particular action,

involving the replacementof the entire existing view.

In [48] the linking action of Notecards is de�ned as:

“Clicking in the link icon with the left mouse button traversesthe link,
i.e. retrievesthe destination card of the link and displaysit on the screen
readyto be reador edited.”

Notecards supports multiple cards being visible on the screen at the sametime, and

the linking structuresand screenshotsgiven asexamplesin [48] show that activating

eachlink hasbrought the object card onto the screenwithout replacingthe existing

view. This linking action is not `traversal'asde�ned abovebut `appear', the act of

bringing new content into the existing view, using a new pane.

KMS [2] usesthe term `navigating':

“Users navigate from frame to frame by pointing the mouse cursor at
an item linked to another frame [(node)] and clicking one of the mouse
buttons KMS accessesthe designatedframe and displaysit in the
samewindow Thus, KMS is replacingthe currently displayedframe
asthrough the userhad physicallytravelled to a new location in the real
universe.” .

SinceKMS usesa singlewhole-screenpane,and this is entirely changedby activating

a link, KMS `navigating' matchesthe de�nition of `traversal'above.

The WWW providesa rangeof linking actions.The default action for a link speci-

�ed with <a href> is to changethe current view to a pagespeci�ed. This behaviour

canbe modi�ed by useof the target attribute. For example,with a target to set to

a particular label, the referred to content will appearin a new window if the window

doesnot alreadyexist, or replacethe content in that window if it does. If the label

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 20

is set to the speciallabel of ` new', the content will alwaysappearin a new window.

WWW linking therefore exhibits the behavioursof `traverse',`appear'and `replace'.

However, the use of client-side technologies alongside traditional HTML, e.g.

JavaScriptor Flash,allow a WWW browserto modify the view in arbitrary ways.For

this reason,a WWW browsermaybe capableof any linking action.

The Amsterdam model [51] considersthe caseof `partial replacement'in a multi-

mediasystem;that is, a systembasedaround video and audio streams:

“Most [hypertext] systemspresenta singlehypertext node which is either
replacedby the destination information, or is left on the screenwhile an-
other window is created for the destination information. . . . Having an
either-or model is useful for text (where most readerscanonly focustheir
attention on one block of text at a time), but it is lessuseful for mul-
timedia presentations,where a user can follow a line from one block to
another while continuing to listen to a spoken commentary or watch a
video presentation.”

The concept of partial replacementis useful generallyand not just for multi-media

centred presentations. For example,a section of text may include a de�nition of a

technical term. This de�nition maybe, by default, fairly limited and lacking in detail.

A link could be de�ned so that the limited de�nition is replacedby a full de�nition,

still within the context of the restof the document. This is just one casewhere `partial

replacement'is useful in a non-multi-media context.

The Amsterdam model speci�esthe concept of `link context' [52] which de�nes

which parts of the current presentationare affected by the link. The term `source

context' refersto the subjectpart of the link and `destinationcontext' the object part.

A further quote from [51]:

“A bene�t of specifyingcontext is that only part of the document structure
needsbe affected on following a link. Components [(Nodes)] higher in
the composition hierarchy remainactiveand only thoseat the lower levels
are affected.”

This bene�t of partial replacementties in with the behaviourof replacementusedasa

core linking behaviourdiscussedin sectionx3.6.1. Note that in this work there is no

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 21

distinction madebetweenfull and partial replacement;the fundamentalaction is the

samefor both, with only the scopeof the subjectvarying.

In WHURLE there are a number of waysfor links to be de�ned (x2.4). The

systemiclinks are typicallyusedfor moving to areasoutsideof the educationalcontent

of the hypermedia. This action would normally be `traversal',although it is possible

for the skin designerto setthe links to usea new window, making the action `appear'.

The two remaininglink classesare `autonavigation'and`linkbase'.Autonavigation

links allow navigation around the structure of the lesson, i.e. up and down page

the hierarchy. Linkbase links allow navigation around the lessonor to an external

resource. Navigating around the lessonhighlights an interesting case.Although the

mechanismis `traversal',sincethe whole view in the singlepaneis replacedwith new

content, in principle the action is replacementsince some of the view, the skin, is

common to eachpage.

In [75] Nelson discussedthe linking action of `inclusion' asa core part of creating

documents. In this model a document can freely include parts of other documents

(which themselvesmay contain parts of other documents). Nelson alsodiscussesthe

legal and commercial impact of this approach, although theseconsiderationsare out

of the scopeof this work.

2.5.1 Commonview

Having examinedsometypical linking actionsand assignedlabelsto them, it is useful

to summariseexactlyhow theselabelsdif fer in relation to the actionsthey describe.

Consider the subjectaffected in eachcase.For `traversal'the subject is the entire

view. In the caseof `replacement'the subjectcanbeanything from the smallestatomic

unit of content up to the entire view minus the smallestatomic unit of content. In

other words, the only dif ferencebetween`traversal'and `replacement'from the point

of view of the subjectis whether the entire view is selectedor not.

For the action of `appear' the subject is the entirety of a new pane, whilst with

`inclusion', the subjectis a zero-sizedpoint in the document.

All of theseactions havepresumedsome `object' content. If there is no object

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 22

content but there iscontent capturedby the subjectof the link, the action is `removal'.

Although this action is relativelyuncommon in hypermediadiscussions,it is a natural

complement to `inclusion'. As for the opposite of `appear',the obvious label would

be `disappear',the removalnot only of content but the paneitself.

In the generalsense,the effects of link activation can be describedas`event-to-

action' where `event' is the eventwhich causesthe link to be activatedand `action' is

the experienceof the user, due to link activation (x2.7.4.2).

2.6 Anchors & Spans

The term `anchor' is usedin relation to the position of an end-point of a link. The

end-point of a link is `anchored'6 to a node or part of a node.

2.6.1 Dexter

Dexter [49] considersthe value of anchoring asthe ability to specifynot only links

between whole components (nodes) but also span-to-spanlinks, as in Intermedia.

Dexter seeksto maintain an independencebetween its layers,and so the end-point

speci�cation cannot rely on any knowledge about the structure of the nodes. The

structure of the anchor is describedas:

“An anchor hastwo parts: an `anchor id' and an `anchorvalue'. The an-
chor valueis interpretableonly by the applicationsresponsiblefor handling
the content/str ucture of the component. It is primitive and unrestricted
from the viewpoint of the storage layer. The anchor id is an identi�er
which uniquely identi�es its anchor within the scopeof its component.
Anchorscantherefore be uniquely identi�ed acrossthe whole universeby
a component UID, anchor id pair.”

In summary, under Dexter the anchorisde�ned aspart of the node, and link structure

refersto the anchor. The valuepart of the anchor can be updated asthe content or

structure of the node is updated,but by keepingthe `anchorid' constanta link which

refersto a sectionof a node cancontinue to refer to the samesectiondespiteupdates.

6Or `bound' [14].

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 23

The aim of keeping node structure proprietary is admirable since when this is

achieveda systemhas the ability to add support of arbitrary media types by only

updating the relevantpart of the system,in this casethe `within-component layer'.

However, examining how link structures themselvesare generatedhighlights some

additional issues.

If the link structure is generatedin an interactiveway, e.g. the userselects̀ create

link', then choosesthe end-pointsby clicking on an instantiatedcomponent, then this

approach can work. The run-time layer can signal the areasselectedto the within-

component layer, which will then generatethe relevantanchor value.

However, considera structure formed from the interpretation of somevariety of

a `written down' form, e.g. link-basedin an arbitrary format. If this link speci�cation

format hasthe ability to specifyareaswithin a node then there is an issueregarding

how the proprietary anchorvaluecanbe generated.This value,according to the Dex-

ter model, can only be generatedby the within-component layer for that particular

type of node. This implies that either the interpretation of the link speci�cation is

performed by the within-component layer, or the parser, whereverit is located, is able

to passa messageto the within-component layer which describethe areawithin the

node, and the within-component layergeneratesthe anchor valuefrom this message.

The �rst of thesetwo approacheswould meanthat eachnode type handler would

alsoneedto be ableto parseany link speci�cationsin use.This would leadto massive

code replication and redundancyin a systemwhich supported multiple linking lan-

guages,andwould not be conduciveto modular programming. The secondapproach

would involve de�ning a standardised messageformat which can capture any node

areaand this is implicitly de�ning a single spanformat. A more pragmaticapproach

that avoidstheseproblems is to require the application to de�ne a common in-node

referencing format, and this is discussedin sectionx2.6.6.

Under Dexter, when a node is instantiated the anchorspresent in the node are

alsoinstantiated. Instantiated anchorsbecome`link markers'. For markerswhich are

referencedaspart of a speci�cation with the direction set to FROM, the marker canbe

activated— for example,by clicking on the areade�ned by the marker — to follow

the link. There are caseswhere the anchor for a link should not be closelytied with

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 24

the method of activating the link (x2.7.3). For this reasonthe standardised form

discussedhere separatesthe concept of a position within a node from the method of

activatinga link, the `trigger' (x2.7).

2.6.2 DHM

DHM [44] altersthe Dexter view of anchoring in severalways.

DHM replacesthe anchor id lookup addressingwith a `pointer' type which can

referencean anchor directly. This changedoesnot directly affect the considerations

of this work sincethe modelling in this thesisdoesnot feature anchorsaspart of the

node structure. However, one of the issuesaddressedby this changeis of interest.

From [44]:

“The biggestproblem with Dexter's model of anchorsis that they are not
properly related to composites[x2.8]. That is, although the contents of
a composite (a list of baseComponents)is `visible' (i.e. explicitly repre-
sented) in Dexter, no mention is made of how anchorsshould refer to
baseComponentswithin a parent composite.”

By usingdirectpointers to anchors,DHM sidestepsthis problem. Again, this solution

doesnot directly apply to this thesis.However, a similar issuedoesexistwith the use

of node types which allow included nodes (x2.8.4), and the ability of a span type

(x2.6.6) to reference included nodes within a node. The solution to this issueis

discussedfurther in sectionx3.6.13.4.

DHM alsodiscusses̀marked' and `unmarked' anchors. Marked anchors,or `link

markers' in Dexter terminology, exist at a particular placewithin the node. If a cer-

tain areaof a node is clicked upon the editor/viewer can examinethe list of marked

anchorsand seewhich, if any, apply. Conversely`unmarked' anchorsdo not exist at

a de�ned location, to seeif an unmarked anchor appliesat a position the anchor it-

self must be queried. For example,the text presentat the point of selectionmay be

checkedto seeif it matchesa list of keywords, and if it does,the link is followed.

Unmarked anchorsare similar to Microcosm's`genericlink', and presentan inter-

esting case.The modelling solution adopted for this work doesnot directly support

this behaviour, sinceall links haveto be declared at time of view generation(x3.6.12)

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 25

although it is possibleto declare the trigger (x2.7) for links. This is what would be

selectedfor a genericlink, without calculatingthe subjectand object parts by the use

of locators(x2.6.6 & x3.5.5.1).

2.6.3 Intermedia

In [68] Meyrowitz describesa broadly similar view of anchorsto Dexter, which is not

surprisingsinceIntermediawasone of the systemson which Dexter wasbased.

The term `block' is usedto refer to a selectedareaalthough there is sometermi-

nology coincidencewith the statement,“ blocksareanchorsto thepart of a document

modelthat is representedbya selection”. Unlike the Dexter papers,[68] makessome

effort to describehow the block could referencedif ferent kinds of media:

“For example,in text it would be an insertion point, character, or range
of characters;in structured graphics,it would be a primitive or group of
primitives; in music it would be a note, group of notes,measure, or group
of measures.”

2.6.4 Tumblerarithmetic

Tumblers[76][75], describedby Nelson asa part of Xanadu[85] describesa method

of referring to a large document space.A tumbler consistsof a seriesof `digits', each

digit being anunbounded positivenumber, surrounded beforeandafterby afull-stop.

Exampledigits could include: .6., .12., .293. .

Tumblerscanbranchby the addition of more digits. Starting with .6. a structure

maybranch into severalmore items: .6.1. , .6.2. , .6.3. , .6.4. . Theseitemscanbe

branchedagain,e.g. .6.4.6. is the sixth item under .6.4. .

Addressesin Xanadu are referred to by a tumbler in a speci�c form. That is,

.a.0.b.0.c.0.d. . a is a seriesof digits, a `�eld', describing the server referred to,

b refersto the user, c refersto the document and d the contents(node). This scheme

is designedto allow globally, in the literal senseof the word, unique addresses.The

total length of the tumbler will alter according to the complexity of the docuverse.

Nelson states:

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 26

“In [Xanadu] we often need to designatea range of bytes, documents,
serversor the like. We maywant to makea link to this range,or search for
all the documents[nodes] in this range,or search for all the links that lie
within this range(or overlapit). Sucha rangewe call a span.”

Spanscanbe de�ned in two ways.Firstly two tumblers referencing absolutelocations

in the docuverse7 can denote the extremesof the range. Secondly, a place tumbler

can be used with a `difference' tumbler which describesthe offset area to capture.

Sincetumbler-basedstorageformsa treestructure it is alwayspossibleto selectavalid

amount of spacethis way.

This approachto spansis interestingin severalways.In somerespectsthe approach

is the oppositeof the Dexter-basedmethods,asit emphasisesthe structure of the span

rather than abstractingit. Xanaduspansdo not exist asindependentobjectsassuch,

being purely de�ned by the spacethey capture. The Xanadumethod side-stepsissues

such asupdating of end-points to re�ect changing documents; since in Xanadu all

versionsof documentsare stored, so a referencedversionremainsunchanged.

However there are someissueswith this approach.The main one is that although

quite good for plain text, the byte-centred view of content is not natural for all media

types,e.g. images.Also, many would argue that the persistentstorageof all versions

of dataproduced is not suitablein many situationsand if this clauseis removedthen

other issuesare intr oducedsuchasdealingwith changingdata.

Additionally, although the spanapproachdoesallow multiple documents(nodes)

sincethe digit valuesdo not haveanysemanticmeaningin themselves8, the bene�ts of

selectingby digits are limited exceptin the caseof large spanssuchas“everything on

this server” or “everything by this user”. Groups of spans,̀ span-sets',are discussed,

thesehavelittle structural valuesimply being unordered groupsof spans.

There are also practical issuessuch as the unique allocation of digits in such a

de-centralisedsystem.But theseare out of the scopeof this thesis.

7`Placetumblers', the type previouslydescribed.
8That is, the fact a document existsat .1. is no more signi�cant than if it existedat .1024. .

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 27

2.6.5 XPath/XPointer

XML is a markup languagebasedon SGML [95] and, nominally, consistsof ele-

mentsandtext. Elementshaveaname,andoptionally attributeswith values.Elements

can contain text and other elements.A XML segmentmay look like this: <element

attribute="value">some text</element> .

XPath [96] is a meansof identifying parts of an XML document and is usedby

XSLT [21], a transformation languagefor XML documents,andXPointer. XML doc-

umentsare a treestructure and a XPath expressioncanrefer to parts of the tree.

XPathexpressionscaneither bea`location path' or ageneralexpression.A location

path is the most useful XPath expression[54] and consistsof zero or more `location

steps' to identify a set of nodes in a document. Each step is a `node'9 whose types

include10 element,attribute and text.

The form a location path takes is similar to a UNIX �le path with the nodes

separatedby slashes.For example/doc/chapter/sentence would locatea sentence

elementwithin a chapter elementwithin a doc element.

Attribute nodes are identi�ed with a leading @, for example

/doc/chapter/sentence/@added would reference the added attribute of the

element sentence. text() selectsthe text present at the position in the path, for

example/doc/chapter/sentence/text() .

As an alternative to location paths,a XPath expressioncanbe a generalexpression

which includesnumeric expressionsand string operations.The full setof possibilities

from theseexpressionsis beyond the scopeof this discussion.

XPointer [97] allows XPath expressions to be used as addressesfor URIs.

The XPath expressionis placed within xpointer() after a hash on the URI. e.g.

http://server.com/page.html#xpointer(/name/bob) .

XPointersalsoallow `ranges',where the resultof the rangeisasetof nodes.Ranges

can either capture by elements(e.g. selectthe contents of all sentence elements)or

by text.

9This bearsno relation to the useof the term `node' representinga constrainedsectionof media.
10An exhaustiveexaminationof the typesis not required for this discussion.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 28

Text rangeslook for the occurrenceof a string regardlessof which element the

text appearsin. After �nding the text, the result can either be the text, or a section

offset from the found text.

XPath/XPointer aresimilar to tumblers in that they focuson the addressingscheme

rather than the independenceof an encapsulatingobject. Like tumblers they are spe-

cialisedtowards referencing a particular medium; XML documents in this case,text

documentsfor tumblers11.

XPath & XPointer form a powerful wayof addressingdatawithin XML formatted

documents, although the complexity of the languages12 is more than is neededfor

purely addressingpurposes.So it is possibleto referenceparts of a XML document

more simply (x4.3.4.3) although the abilities of XPath & XPointer give a powerful

user-level tool and help to guard againstdocument changesmore effectively than a

more simplisticapproachmight.

It canbe suggestedthat there are two parts to XPath & XPointer. Firstly, there is

the ability to accuratelyreferencepoints within XML documentsand secondlythere

are the user-level tools.

2.6.6 Commonview

The work in this thesisis largely concerned with implementation issues,with a view

towardsformulating apracticalmodel for linking actions,including document forma-

tion, in hypermediasystems.Leavingthis dataproprietary andunde�ned, asin Dexter,

leadsto the problems previousdiscussed.Instead, in this work a classis considered

that is availablethroughout the hypermediasystem.Regarding the namefor this con-

cept, the term `anchor' is avoidedto prevent any connotations with the activator for

a link (x2.7) and the term `span'is usedinstead.

The Spanclassmust be able to referencecontent in any media type processedby

the application. For exampleif the systemprocessestext and images,the Spanclass

should be able to referencebyte offsetswithin text and regionswithin the image. If

11Although Nelson would almost certainly argue that tumblers are suitablefor all media types,this
is not a view supported by this thesis.

12Which this discussionhasonly scratchedthe surfaceof.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 29

the systemalsohandlesvideo, the Spanclassshould include awayto referenceregions

of the frame,and a period of time within the video.

The complexity of the Spanclasscan vary according to the �exibility desired by

the systemdesigner. For example,it is simple to implement the speci�cation of an

imageregion by specifyingthe cornersof a rectangle.A more �exible, but alsomore

complicatedapproachis to allow a number of points to be de�ned and to capture the

areawithin them. Similarly, it is simple to describea region of a video by a rectangle

intra-frame region and a time-span. A more complicated approach would not only

allow a more �exible intra-frame region but alsoallow that region to vary acrossthe

time-span.

The ideaof a Spanclassis, at this stageof the work, a generalconceptand the �ne

detailsof the `mechanics'of the classare not important. Mor e explicit discussionson

the implementation of spanscanbe found in sectionsx3.6.13.2 and x4.3.4.3.

However, without detailed implementation discussions,a few considerationscan

still be discussedat this point. Firstly, a sensibledesignof Spanclasswould be extend-

able to include new media typesasthe scopeof the systemincreases.Furthermore,

addedsupport for new mediatypesshould not affect parts of the systemalreadyusing

the class.

Secondly, a Spanclassshould feature, asa member, a Locator object. A locator

allowsthe rangerepresentedby the span,the `spanvalue'13, to be updatedin asimilar

wayto the useof the `anchorvalue' in Dexter. Locators, like spans,are a generalcon-

cept and the wayin which locatorswork mayvary from designto design.A particular

approachto locatorsis discussedin sectionx3.5.5.1.

Lastly, the classmay include a member of classPresentation which describes

how the spanshould be styled. For example,the object may specifycolour shadings

to apply to the span.

An genericoutline of the Spanclassis shown in �gur e 2.4.

Basedon this de�nition of a spanit is possibleto update the previousde�nitions

of a high-level and decomposedlinking structure to thoseshown in 2.5 and 2.6.

13Note that the spanvaluedescribesnot only the location within the node but the address/ID/etc.
of the node itself.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 30

Span

Value
Locator
Presentation

FI GU RE 2.4: Spanclass

Link
End-point

Span

End-point

Span

FI GU RE 2.5: High-level linking structure

Link
Subject

Span

Object

Span

FI GU RE 2.6: Decomposedlinking structure

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 31

2.7 Triggers

2.7.1 Overview

In section x2.4 link structures were discussedand two views were intr oduced, the

high-level structure (Figure 2.2) and the binary, decomposedlow-level form (Figure

2.3). In sectionx2.6 a more preciseview of link end-points wasintr oduced, resulting

in revisedforms of the two structures(Figures2.5 and 2.6). The actionscarried out

by a link were discussedin sectionx2.5.

In this section the conceptsof link structure and link action are tied together, as

the processof link activation is examined.A shorter version of this discussionwas

publishedas[65].

2.7.2 Link activation

The WWW haspopularisedthe ideaof “clicking on a link”, an expressionwhich also

features in hypermedia research [42]. However, aspreviouslydescribed,a link is in

concepta semanticconnection and in practicea data-structure capturing end-points.

An alternative description hasbeen that the link anchor is clicked upon to activate

a link [103]. This description is slightly better as the idea of an anchor is closely

associatedwith the idea of a link end-point. However, an anchor may not alwaysbe

associatedwith a link, e.g. the anchor structure is persistentregardlessof whether a

link structure refersto it or not [25].

A better description of link activation is to saythat a symbolic representationof

the end-point may be clicked upon. In Dexter [49] describedthis symbol asa `link

marker':

“Instantiation of a component also results in the instantiation if its an-
chors.An instantiatedanchor is known asa link marker. This terminology
is congruent with that usedin Intermedia,where the term `anchor' refers
to an attachmentpoint or region and the term `link marker' refersto the
visible manifestationof that anchor in a displayeddocument. In order to
accommodatethe link marker notion within the model, an instantiation
is actually a complex entity containing a baseinstantiationtogether with

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 32

a sequenceof link markersand a function mapping link markersto the
anchorsthey instantiate.”

In other words,link markersareseparatedataobjectswithin the instantiation although

they map onto existing anchors.Theseanchorsare in turn associatedwith particular

link structures.If a link markerisselected,the systemdetermineswhich link structures

the associatedanchor is amemberof, and from there candetermine the availableend-

points.

Link markerissuesare alsoconsidered in [81] which addsseveralconsiderationsto

the original Dexter model. Firstly, the paperconsidershow link markersare associated

to anchors,i.e. is there a static or a dynamic mapping?Secondly, the paperdiscusses

that not all anchorswill have associatedlink markers.This underlines the previous

issuewith “clicking on anchors”.

OHP [26] following [58] usesthe term `persistentselection'for “ that objectwithin

thenodedata which is thephysicalmanifestation of the link anchor, suchasa coloured

text string”.

Rizk and Sauter [86] describelink activation where a user can activate,e.g. by

clicking, a `sensitivearea' which is associatedwith an anchor. Interestingly, [86] states

that “ thepropertiesof sensitiveareas(geometry, kind of eventscapturedetc. . .) are the

soleresponsibilityof thecontenteditor”. This implies that the location of sensitivearea

may be distinct from the location of the anchor. However, sincethe term anchor is

de�ned as“ a hypermedia objectassociatedto a sensitivearea” rather than asa part of

an end-point type, the de�nition is lessclear. However, the suggestionof a rangeof

possibleeventsand a dissociatedsensitiveareais interesting, and is expandedfurther

in this work.

Any de�nition of link activation basedaround `clicking' is fundamentally limited,

asa number of `events'may causethe link to be activated.For example,document

formation (x2.8) basedaround linking is lessusefulif eachpart of the document must

be brought into view by a manual click. Link activation eventsare discussedfurther

in sectionx2.7.4.2.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 33

2.7.3 The needfor a separate structure

The `instantiated end-point as link activator' model is not suitable for general link

modelling due to the implication that the activatorexistsat one end of a link. This as-

sumption works when the linking action is limited to `traverse'— within the pane—

or `appear',sincetheseactionshavean `all or nothing' approach to the affectedcon-

tent. The view containing the activator is either completely replacedor not affected

at all. Caseswhere part of what the userseesis affectedby the link action, highlights

the limitations of this model.

Consider a HTML framesetdividing a window vertically into two panes.The left

paneis usedfor a menu and featuresa number of clickablesections.The right pane

showscontent which changesasoptions in the left paneareclickedon. This behaviour

is implementedby using <a href> links with the target attribute set to point to the

content pane.If the <a href> sectionwasone end-point of the link then it should be

affectedby the link action, but insteadthe subjectof the link is the content paneand

the object of the link is the new content. In other words, the activator for the link is

distinct from either of the end-points of the link.

A more complex examplecan be constructed using Hytime [78] to describea

`time-based'document. A video clip might be displayedin one sectionof the viewable

screen,whilst annotationsor elaborationsupon that clip appearin another. The text

of the annotations could be scheduledto changeat particular timing valuesof the

video14. The end-points of the link in terms of effect are the annotation pane and

the new annotation. The activator itself is not affected, i.e. it is still in view after link

activation.

The useof link contexts in the Amsterdam model [52] are an improvement over

the traditional view of link markerssince they allow replacementof sectionsof the

view. However the marker must still be presentwithin the subject15, so it is not pos-

sible to de�ne the effect of the �rst examplein this section.

In addition to distinct affected areas,the presentationof the marker should be

14Pageetal. describeasimilar situation with the annotationstaking the form of setsof availablelinks
in [82].

15`Sourcecontext' in AHM terminology.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 34

separatefrom the presentationof the end-points. In a particular systemmarkersmay

be back-shadedin blue, but the regions of a view that would be replacedwith new

content are back-shadedyellow. There would need to be a distinct presentationde-

scription for the markerand the end-points.

For thesereasonsit isusefulto intr oduceaseparateconceptnamed`trigger' which

describesthe activator of a link and is distinct from the idea of a link end-point.

Alongside the general concept, a classdescribing a trigger, named Trigger, can be

intr oduced.

2.7.4 Triggerstructure

2.7.4.1 Span

The conceptof aspandescribingaregion of hypermediahasbeenintr oduced(x2.6.6)

and the Spanclassmust be capableof referencing within any type of mediaprocessed

by the system.

This sametype is usedwithin the Trigger classto de�ne where the trigger exists.

So it is possible,for example,to de�ne a trigger which is availablebetweentwo points

of text or within a certain region of a video clip.

2.7.4.2 Event

The event member of trigger describeswhat causesthe link to be activated.Event

types could include clicking on the trigger's span,hovering over the spanwithout

clicking the mouse or a trigger which is activatedassoon asit is presented.In this

thesisanumber of symbolsare assumedwhich representthesebehaviours,e.g. click ,

hover, timeout and instant .

The instant type would be usedin a number of situations.Firstly instant trig-

gersare usedaspart of document formation. As soon asthe `basenode' is displayed

the links applied to that node which include extra content should be activatedwith-

out user intervention. The examplegiven in the previoussection regarding a display

updatedthrough the playbackof avideo clip would alsousethe instant trigger. This

approachallowssynchronisation asdiscussedin [53].

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 35

As well asa simple type, the event description should include relevantquali�ca-

tions. For example,for hover the number of secondsof hovering before the link is

activated.A similar quali�cation would be usedfor the timeout eventwhich activates

the link after the trigger hasbeenpresentedfor a setamount of time.

In generalthe behaviourof a link canbe describedby the eventand the action in

the form of `x-to-y', e.g. `click-to-traverse',`hover-to-r eplace'etc.16

2.7.4.3 Presentation

2.7.5 Generalappearance

The presentationattribute determineshow the trigger appearson screen.Hypermedia

systemshaveuseda varietyof stylesto show the presenceof triggers within a display.

Thesestyleswere summarisedby Weinreich et al. in [99]. For exampleHyperTIES

highlights triggers by using cyan text [88], Intermedia placesan arrow icon next to

the trigger, Harmony shadesthe background of the trigger area[66]. The default use

of blue underlined text on the WWW is well known.

The presentationstyleof the trigger mayaffect the interpretation of the span.For

example,a link may be de�ned so that the word `badger' is a trigger to displaysome

information about badgers. In some styles the trigger would exist over the entire

word, and clicking anywhere on that word would causethe link to activate.In other

casesa marker may be placedafter eachinstanceof the word and clicking the marker

activatesthe link.

Weinreich et al. alsoconsiderspresentationstyleswhere a link hasmultiple end-

points:

“Links with multiple endpoints do not connect only two, but a setof re-
latednodes.Thus dif ferent alternativedestinationscanbe provided. When
a user initiates the traversalof a link with multiple endpoints, he can be
requestedto choosebetweenthe availableoptions. This solution waspre-
ferred by most former hypertext systems.Microcosmand DLS presented
a list of generatedlink targets on an intermediary pageasthe result of a
userquery. Intermedia displayeda box with a list of link titles. Likewise,
the preferred ideafor XLink seemsto be a pop-up menu.”

16Although `instant-to-y' doesnot �ow so nicely.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 36

As well astheseoptions it is alsopossibleto show multiple options in-line with the

position of the trigger. For example,GHURLE (x4.7.4) presentspossibleend-points

in a block (�gur e 4.8).

The rendering of multiple end-point links provides an exampleof how the pre-

sentationspeci�cation mayalter the effectivetrigger span.In Goate (x4) trigger spans

are de�ned by Languagemodules (x4.7) which haveno knowledge of the detailsof

the hypermedia client in use.Whilst the modulescan declare a generalpreferencein

trigger presentationstyle, such as`pop-up' or `block', this may not be availablefor

a particular client. For example,the Defren renderer (x4.8.1) presentsmultiple end-

points by placinga <a href> link around the `top' option and listing other options as

suf�xes (�gur e 4.9).

2.7.5.1 Title

In somecases,suchaswith a pop-up or block style trigger block, there is a require-

ment for some`title text' to be de�ned 17. For sometrigger presentationstylesthe title

text will not be needed,such asfor single end-point links where the trigger spanis

simply clickedon to activatethe link. Additionally, evenif a pop-up presentationstyle

is chosenthe pop-up may not be activatedwhere there is only possibleend-point for

the link.

However, it may be sensibleto require title text to be presentin all cases,since

although a link author may not anticipate it being useddue to the expectedpresen-

tation style, the presentationstylemaychange.For example,a particular client in the

hypermediacannot handle the speci�ed styleand so an alternative is used,one which

doesrequire a title. Alternatively, whilst the author anticipatedasingleend-point link,

links from other sourceswith triggers declared over the samespanwould result in a

multiple end-point link which requiresa stylefeaturing the title text.

The completeTrigger type is shown in �gur e 2.7.

17The title text de�ned aspart of the presentationspeci�cation may or may not be the sameasthe
link title asde�ned aspart of the link speci�cation, e.g. in [31].

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 37

Trigger

Span

Event
Presentation

FI GU RE 2.7: Trigger type

End-point

Span

Value
Locator
Presentation

Trigger

Span

Event
Presentation

FI GU RE 2.8: Endpoint classincluding trigger support

2.7.5.2 Reconciliation

Note that a trigger is affected by two presentation speci�cations; the member de-

scribed in this section and the presentationspeci�cation in the Spanmember. The

detailsof thesetwo speci�cationsmust be reconciledby the hypermediasystem.

2.7.6 Integration

The modi�cations to an existing hypermediamodel to accommodatetriggers depend

on the current modelling of links. For the high-level structure discussedthroughout

this chaptera trigger should be attachedto eachend-point18. The hypermediasystem

will needto presentthe trigger when both the trigger location and end-point location

are in view. A modi�ed end-point classis shown in �gur e 2.8.

Triggersin high-levelstructuresneedto be attachedto end-pointsand cannot exist

directly under the link datastructure, sincein the casewhere multiple end-points are

in-view simultaneouslyit would not be possibleto know which end-point should be

18A particular designermay wish to havemultiple triggers per end-point, this possibility is not dis-
cussedhere.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 38

Link
Subject Object Trigger

FI GU RE 2.9: Decomposedlinking structure supporting triggers

affectedby which trigger [6]. Note that in caseswhere anend-point cannotbe usedas

the subject for a link, e.g. with a uni-dir ectional link, the trigger part canbe omitted

or left unde�ned.

With the decomposedmodel there is no ambiguity regarding which end-point is

affectedby the trigger. Therefore, whilst it is valid to havea Trigger member of the

Subject part it is equally correct to have the Trigger as a direct member of link

data-structure asshown in �gur e 2.9.

2.7.7 Independenttriggers

Although it is not central to the principle of triggers, a system/model designermay

decide to promote triggers to be independent of the link object. In this casea link

object would refer to one or more trigger objectsbut would not contain them. Many

link objects could share a common trigger declaration. This is similar in concept to

the wayanchorsexist independentlyof links, asdescribedin [25].

2.7.8 Resolvingconicts

In somecasestriggers presentin a view may interfere with eachother. For example

two `instant-to-traverse'links may be activeat the sametime, in this casethe system

would needto arbitrate and decidewhich link takesprecedence.

2.8 Composites & Documents

A composite is a collection, or container [100], of distinct items of content. This

sectionexaminesthe modelling of this conceptand how it relatesto the experienceof

the user.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 39

2.8.1 Notecards

The basicstructure of Notecards [47] is a collection of nodes(notecards) connected

by links. A notecard can either be an item of content, or can be of the specialised

types,`browser' and `�lebox'. A browsernotecard displaysa section of the notecard

network and a �lebox notecard is a card in which other cards, including �lebox cards,

canbe �led.

Fileboxes“ weredesignedtohelpusersmanagelargenetworksof interlinked notecards

byencouragingthemto usean additional hierarchicalcategorystructurefor storageand

retrieval purposes.”. [47] providesan exampleuseof �leboxes:

“A typical use for compositescan be seenin the task of writing and or-
ganisinga document (e.g. a technical report) in NoteCards. In this task,
userstypically put the text for eachsubsectionand for each�gur e into a
separatecard. All of the cardsfor asinglesectionare then �led in a �lebox.
Thesesection�leboxes are �led in the appropriatechapter�leboxes, which
in turn are �led in a single �lebox representingthe document. . . . Using
the Notecardsdocument compiler, the usercanlinearizethe network into
a single document card containing all of the text and graphics for the
document in the appropriate order but without anyhierarchicalstructure.
This document can then be manipulated,e.g. reador printed, asa single
entity.”

However [47] alsohighlights severalissueswith �leboxes, �rstly:

“Ther e is a problem, however, in that the document card is a separate
entity from the `source' cardsstored in the document's �lebox hierarchy. It
containsonly copiesof the text/graphics from thesesourcecards.Changes
made to the text/graphics in the document card are not (automatically)
re�ected in the correspondingsourcecard.”

In other words, content is included `by value' and not `by reference'. [47] recog-

nisesthis and suggeststhat composition should be by reference.A secondproblem is

highlighted:

“. . . the user can seethe entire document at only one level. Despite the
elaborate�lebox hierarchy, there is no way to `zoom' in and out of the
document structure, examining its contentsat dif ferent levelsof detail.”

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 40

This suggeststhat the usershould be able to work with the composition mechanism

to control the `depth' of its included contents(x3.6.12.5).

One further discussionfrom [47] is worth highlighting:

“. . . Notecards usershavefrequently requestedthe ability to refer to sub-
networksor collectionsof unlinked cardsasunique entrieswith namesand
properties of their own, separatefrom the namesand properties of their
component nodesand links.”

The corepart of this statementis “ sub-networksor collectionsofunlinked cards”. Sofar,

the useof �leboxes/composites in Notecards hasbeendescribedwith a view towards

document formation. The ordering of entries in a �lebox card wasusedto form the

linear structure of the resultantlinear document. A compositein this caseis capturing

a `sub-network'. However, a `collection of cards' is a fundamentallydif ferent concept

sincethis doesnot necessarilyaffect the lineariseddocument. Consider two examples:

A compositedescribinga chapter in an authored work would contain the sectionsto

include, and the order in which to include them. Conversely, an collection of cards

relating to, for example,horseracing is an organisationaltool and doesnot affect the

output.

For the purposesof this work, the modelling of the �rst caseis acore requirement,

whilst the secondcaseis a higher-level user tool and doesnot need to be captured.

In this work the term `document' is used for the �rst caseof composite aboveand

`(unordered, semantic)grouping' for the second.Figure 2.10 illustratesthe dif ference

betweenthesetwo concepts.

2.8.2 Other compositemodels

In [91] it is stated that modelling compositeswith linking is “ sometimespossible”

and “ separatestructuring mechanismsaregenerallynecessary”. The examplegiven de-

scribesa scenariowhere a group of data is semanticallyconnected,in that it is similar

in someregard, andshould be kept together. Theseitemsof dataare still independent

in that they can be included within other compositesasneeded.This de�nition of

compositestallies with the de�nition of `group' above. In this sensethe arguments

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 41

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

FI GU RE 2.10: Documents vsGroups

presentedin [91] makessense,sincetr ying to maintain groups with linking can be

complexasthe number of instancesa node is usedin a group increases.

In a later work [92] Trigg brie�y mentions the modelling of compositesusing

links:

“At the moment, the OHP [(Open Hypermedia Protocol)] lacks sup-
port for non link-basedstructuressuchasthe Dexter composite.Although
compositesarenot normally thought of astraversable,therearenavigation-
like behaviourstypically associatedwith them. For example,one might
interpret a compositeasa multi-headed link with a specialized̀ child' di-
rectionality.”

This de�nition still does not addressthe issueof ordering within a composite, but

does agree with the idea that generalisedcomposite behaviour is possibleusing a

broad de�nition of `linking'. This work argues that linking is a perfectly valid and

sensiblewayof creating documents.This ideais further discussedin sectionx2.8.3.

In [79] the statementis made“ it is clear that compositescan bemodelledbylinks”

although it then goeson to saythat this is not a natural thing to do. The example

given is that although any Turing-complete programming languageliterally hasthe

samecapabilitiesasany other, people still choosedif fering languagesdependenton

their requirements.In other words,although compositescanbe modelled in this way,

this doesnot meanit is a desirableor natural action. However, this statementis made

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 42

with [91] asa referencefor why this would not be natural. Again, this is referring to

group creation not document creation.

The view of Dexter [49] regarding compositesis simply:

“Composite componentsare constructed out of other components.The
compositecomponent hierarchy createdwhen one compositecomponent
containsanother is restrictedto be a direct-acyclic(sic) graph (DAG), i.e.
no compositemaycontain itself either directly or indirectly.”

This implies a similar view of compositesto �leboxes in Notecards, although the de-

tails are not expandedupon. Note that in the document structure describedin this

work documentscancontain themselvesdirectly or indirectly, although an implemen-

tation may chooseto limit the effect of this recursionby setting the depth attribute

(x3.6.12.5).

In [41] aspart of the work on DHM, an extensionof Dexter, compositesare de-

scribedin more detail. Compositesare considered according to four aspects19: Struc-

ture, Type, De�nition and Location. Structure describeswhether the composite is

ordered or not and three examplestructuresare given: Sorted list, keyed table and

tree.The Typeaspectrefersto whether the contentsof the compositeare components

(nodes,links, composites)or other data-objects[44] encapsulatedin acontainer type.

The De�nition aspectdescribeswhere the classde�nitions for the data-typeswhich

describeother factorsare themselvesplacedin the composite or are globally visible.

Finally, Location describeswhether the contents of the composite are included by

content or reference.

Of the exampleStructure types previous listed [41] only describeshierarchical

treesin the senseof either `contentsby reference'or `contentsby value'. In eachcase

the structure is provided by a classe.g.:

“In DHM, we haveintr oduced a compositetype, the ContainerCompos-
ite, that behavesmuch like directories.The ContainerComposite is a spe-
cialization of the NonLinkComposite class,i.e. it canhold a mixed setof
AtomComponents and other CompositeComponentsand thereby other
ContainerComposites.By meansof ContainerCompositesit is possibleto

19Previouswork [44] considered threeaspects.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 43

maintain a directory tree like organization of a hypertext, where the hy-
pertext itself becomesthe root directory.”

In WHURLE [71] `chunks' are arranged into `pages'.A chunk may appearin more

than one page.The order of chunks within a page is speci�ed aspart of the lesson

plan. This correspondsto the de�nition of `document' above.

2.8.3 Modellingdocumentswith links

The previousdescriptionof linking actions(x2.5) featured the behaviourof `inclusion'

where content is included in existing content. Consider the casewhere a text node

is affected by two links which include imageswithin it. The resulting effect would

be that shown on the left of �gur e 2.10. This raisesa question asto the relationship

betweendocumentsand nodesaffectedby linking. For this work the focusis on how

documentscanbe modelled in amannersuitablefor implementation, andsothe data-

structureswhich representnodesanddocumentsshouldbeconsidered.For discussion

purposestwo typescanbe assumed:Nodeand Document.

There are a number of approachesto the co-incidencedescribedabove,which can

be representedin data-structures.

1. When a Nodeis affected by inclusion it is transformed into a Document. Both

Nodeand Documenttypeshaveequal standing so that a link to a Nodebehaves

the samewayasa link to a Document20.

2. There is no distinction betweennodesand documents in terms of modelling.

The Nodetype is capableof modelling links to other nodes,the Documenttype

doesnot exist.

3. The Nodetype is capableof storing links to other items, asabove.However, the

Documenttype continuesto exist. In other words, the document `effect' canbe

modelled in two ways.

20This is similar to how composites in Dexter are components at the same level as atomic
components.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 44

The thir d option here intr oducesredundancy, which is undesirablefor a standard

processrelating to document modelling and so can be discounted. Regarding the

�rst two options it is worth examining how the positions within a document can be

captured.

2.8.4 Structureof a document

Consider the document shown on the left of �gur e 2.10. There are two waysthese

could be considered to be structured. Firstly, there is a document structure which

stores“A spanof text for X , the image A, another spanof text from X , the image

B.” Secondly, one which stores“The text X containsimageA at position I and image

B at position J .”

The core dif ferencebetween theseapproachesis that in the �rst, the Document

type containsstructuring information regarding the relativeposition of the content,

and in the secondthe Nodetype, speci�cally the type for X , containsthe structuring

information.

The `structure-in-Document' approachhasbeenusedbefore.For example,in Note-

cards it is the simplelinear ordering in the �lebox cardswhich determinesthe waythe

linearisedwork appears.

However, considerthe lessconventionaldocument structureshownin �gur e 2.11.

In this casethe document is formed by replacinga section of the outer image with

the inner image. Note this is just asa valid a document asthe previousexample,as

the conceptsinvolved are not tied by de�nition to a text-centric view. For the effect

in �gur e 2.11 to be representedin the Document-structured approach, the Document

type would require the ability to describea two-dimensional arrangement.

A further examplemaybe a document basedaround a video clip, where an image

is included asa frame. Again, the Documenttype would be required to describeareas

of the video. However, in eachof thesecasesthe Nodetype would alreadyhavethe

ability to describethe areasconcerned, since this type must already work in these

`dimensions'.Therefore, by expandingthe Nodetype to allow the inclusion of other

nodes,the requirement for a complexDocumenttype is avoided.Note that in practice

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 45

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

FI GU RE 2.11: Image-in-imagedocument

there would not normally be a single Nodetype which capturesall media which can

referenced, but the type would contain an expandablelist of other types, of which

eachdescribesa media type (x4.3.4.2).

For this reason,and the added simplicity of working with a single data-type for

both concepts,this work is basedon the idea of document formation through the

application of linking actions to nodes, and doesn't distinguish the document type

from the node type.

In somecasesit may be desirableto createa sub-classof the Nodetype to serve

purely asa container and not to representa type of media.This type would be struc-

tured in such as way as to allow the useful position of Nodetypes within a given

number of dimensions.This type would still be distinct to that of the Documenttype

previouslydiscussedsinceit would not be required to model the position of all types

in all cases,and is not a requirement for document formation. Rather, this type would

re�ect the fact that some Nodesub-typeswould make more useful containers than

others in terms of achievingan aestheticeffect.

2.8.5 Authoring vs. incidence

The concept of a `document' describesa node which hasbeen affected by a linking

action. For example,anode which hasaparagraphremovedby anactof linking would

be a document.

There are two waysa document can be created,`authoring' and `incidence'. Au-

thoring describesthe casewhere the particular arrangementof the document hasbeen

pre-speci�ed. For example,the hypermedia author may de�ne a pagewith a pieceof

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 46

text and two imagesplacedat certain locations, similar to �gur e 2.10. The images

here would presumablybe linked using the action `include' and the trigger event of

instant . This is considered to be an `authored document'.

Now consider the casewhere a single node — or multiple nodes in a document

— hasa link assignedwhich usesan electiveaction suchasclick . When activatedthis

link replacespart of the displayednode with new content. The result of this action

would be a new document. This is considered to be an `incidental document'. This

document maybe further affectedby links declared on the new content and so on.

Note that `authored' and`incidental' are termsusefulfor discussionpurposesonly;

the data type which describesthe two resultsis the samein either case.An authored

document can be recalledby presentingthe outermost node. The linked in content

will be included automatically21. Incidental documentsrequire the original document

and the path of links to activate22.

2.8.6 Terminologysummary

It is worth clarifying the useof terminology for the conceptsdiscussedhere. `node'

remainsa description of a singlemedia item. However in practicea node cancontain

other nodesat which point it becomesa `document' in concept, although the same

data structure, Node, is used in both cases.A `document' is a node affected by the

effectsof linking in someway. This term excludeseffectsprior to the executionof the

linking-action, suchasthe appearanceof an on-screenmarker to denote the existence

of a trigger (x2.7). The term `composite' is retainedto describeeither an ordered or

unordered collection of nodes.

2.9 Open Hyper media

One of the stated aims of this work is that any design should support the use of

multiple client applicationsto accessthe hypermedia system.This requirement ties

21Parameterscontrolling the displayof the document mayexcludelinked-in content (x3.6.12.5).
22In an adaptive systemwhich intr oduces and excludeslinks dynamically, recall of an incidental

document maynot be possible.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 47

in with the idea of `open hypermedia'. It is worth examining common de�nitions of

open hypermedia.

“An open hypermedia platform supports inter-tool linking asa meansof
integrating distributed heterogeneoustools and data formats.Systemde-
velopersare supplied with an open systemarchitecture including a link
service and a storagesubsystemtypically referred to asa hyperbaseman-
agementsystem(HBMS). The link serviceprovidesacommunication pro-
tocol allowing thir d-party distributed heterogeneoustools to participate in
hypermediaservices(anchoring and linking capabilities.” [102]

This de�nition encompassesmany of the common themesrelating to the concept

of open hypermedia,namely:

� Distributed tools — A number of separateclient applicationscanexist.

� Heterogeneoustools and data formats — The client applicationscan be very

dif ferent from eachother and their dataformatscanalsodif fer greatly.

� Link service— The systemprovidesa `link service' which provideslinks to par-

ticipating clients: “ At its simplest,a hypermedia link servicetakesa sourceanchor

in a multimedia documentand returnsthepossibledestinationanchors,obtained

byinterrogatinga link database.”[29]

� Communication protocol — A standard protocol is de�ned betweenthe clients

and hypermediasystem.

“The consensusof the OHSWG [(Open Hypermedia SystemsWorking
Group)] has been that openhypermedia systemsallow an open set of
clients of the hypermedia servicesprovided by the system.No assump-
tions about the clients (suchasdatatypeshandledetc.) are made.” [79]

This de�nition emphasisesthat the systemneed not know anything about the

clients in an open hypermediasystem.Pedantically, this not true sincethe systemwill

know that the clients conform to the communications protocol described.In terms

of knowing whether the clients can handle a particular data-type,this information is

useful to the systemasit canaffect the presentationof documentssent to the client.

In sectionx3.6.11 a method is describedwhere the systemcan tailor the documents

producedaccording to the capabilitiesof the client concerned.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 48

“Open hypermediasystemstypically provide dif ferent middleware services
such ashypermedia authoring, hypermedia browsing, collaboration, and
distribution. Theseservicesare provided through acommon interfacethat
allows an open set of desktop applicationsto make useof the services.”
[101]

This de�nition explictly adds authoring and collaboration as concerns. Author-

ing is outside the scopeof the current areaof research. Collaboration is a user-level

tool, similar to groups (x2.8.1), and so is not directly relevantto a considerationof

fundamentalbehaviour implementation.

“The term `open hypermedia' cameto be associatedwith the provision
of a hypertext servicewhich enabledclient applicationsto create,edit and
activatelinks which were managedin separatelink databases;it contrasted
with the monolithic approach to hypertext systemsin which the func-
tionality of both data and link managementwasprovided within a single
indivisible application.” [19]

In the �rst clauseof this description,and in particular “ in separatelink databases”,

it is not clear from what the link databasesare separate.If they are separatefrom

eachother, then this matchesthe requirement to consider links from many sources.

However, the secondclauseimpliesthat link managementisseparatedfrom dataman-

agement. This interpretation matchescommon open hypermedia examplessuch as

Microcosm [35] where the client application is responsiblefor the data and the hy-

permedia systemthe links. For example,a usercan type directly in a Word processor

and use the linking facilities of the hypermedia systemto annotate that work with

links.

Such a view presentssome problems to the approach detailed in this work. Re-

member that linking is a fundamental part of document formation and links are not

usedsimply to makenew content appear, in this casepossiblyin aseparateapplication.

If the full rangeof links asdescribedpreviously(x2.5) were suppliedseparatelyfrom

the data,then the client applicationswould haveto be capableof document formation

themselves.Furthermore, the clientswould needto be ableto interpret all referenced

data-types.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 49

Rather than working asa pure link service, the work here describesa `document

service' which returns completed documents23 alongsiderelevanttriggers (x2.7) for

the client to declare.

Finally, considerthe following de�nition:

“The term openimplies the possibility of importing new objects into a
system.A truly open hypermediasystemshould be open with regard to:

1. Size: It should be possibleto import new nodes, links, anchorsand
other hypermedia objects of any limitation, to the size of the ob-
jectsor to the maximum number of suchobjectsthat the systemmay
contain, being imposedby the hypermediasystem.

2. Data Formats: The systemshould allow the import and useof any
dataformat, including temporal media.

3. Applications: The systemshould allow any application to accessthe
link service in order to participate in the hypermedia functionality.

4. Data Models: The hypermedia systemshould not impose a single
view of what constitutes a hypermedia data model, but should be
con�gurable andextensiblesothat new hypermediadatamodelsmay
be incorporated.It should thus bepossibleto interoperatewith exter-
nal hypermediasystems,and to exchangedatawith external systems.

5. Platforms: It should be possibleto implement the systemon multiple
distributed platforms.

6. Users: The systemmust support multiple users,and allow eachuser
to maintain their own privateview of the objectsin the system.

” [26]

The issueof `data formats' ties in closely with the direction of this work. The

requirement for `datamodels' is alsoconsidered, albeit by being model agnostic.For

`applications',this work supports the ideathat anyapplicationshould be ableto access

the system,by providing support for a rangeof interfaceoptions

The issuesof `size'and `users'are usefulgeneralconsiderationsbut not key to the

research. For `platforms', how this correspondsto this work dependson the de�nition

of `implement', certainly there should be not restrictionson the platforms usableas

clients. However for the hypermedia server itself, restrictions are tolerable sincethe

restriction will be placedon the administrator of the systemrather than on end-users.
23A document mayof coursebe a short sectionof a node, e.g. a sentence.

2. H YPERM ED I A BEH AVI OU RS AN D EXPERI EN CES 50

2.10 Conclusion

This chapterhasexaminedcore conceptsof hypermediaand for eachhasdescribeda

common view. Thesecommon viewswill not map directly onto every existing hyper-

mediasystemor discussion,but rather form a tool-kit for the developmentof system

implementation models.

51

CH APTER 3

M O D EL L I N G H YPERM ED I A

I M PL EM EN TAT I O N

3.1 Overview

This sectiondescribesthe evolution of work to developamodel for hypermediaimple-

mentation. The focusof chapter2 wason the behavioursandconceptsof hypermedia,

while the focus of this chapter is the mechanics,and a method by which a developer

canimplement behavioursand concepts.

The modelling work describedhere wasdevelopedin parallelto Goate (x4), with

the various models presentedhere relating to stagesof development in Goate. The

�nal model presented,Meles,providesa completeapproachto the scopeof the work.

The previousmodels are discussed,asthey show how developmentwasshapedand

how the design of Meles has been affected by issuesencountered with other ap-

proaches.

3.1.1 Scope

Note that the scopeof this work dif fers from the scopeof most hypermedia models.

This work is focusedstrongly on the concept of hypermedia implementation. Given

that a link speci�cation exists,the questionarisesof how that translatesinto something

the user can use, and when activated,how the link affects the user'sview onto the

hypermedia.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 52

FI GU RE 3.1: The Dexter Model

The models presentedin this section cover varying amounts of the `greater hy-

permedia application'. The greaterhypermedia application is the entire systemfrom

node creation and editing, link speci�cation, storagesystemsfor nodesand links, user

accesscontrol etc. aswell asthe implementation of hypermediabehaviours.

Note that this work does not seekto model existing hypermedia systems,but

rather provide a development framework for future highly extendablehypermedia

systems.

3.2 Related work

Chapter 2 examined individual conceptsrelating to hypermedia. These discussions

referred to anumber of existinghypermediasystemsanddesigns.In this sectionentire

systemsand modelsare evaluatedagainstthe requirementspresentedpreviously.

3.2.1 Dexter

The Dexter hypertext referencemodel [49] is arguably the most successfulattempt to

model the underlying designof hypermedia systems[24], and hasbeen the theoret-

ical basisfor a large number of implementationsand extensions[30], [36] and [44]

among manyothers.

The model consistsof threeprinciple layers:Runtime, StorageandWithin-Component.

Additionally there are two `glue layers': Presentationspeci�cations and Anchoring.

The Dexter model is shown in �gur e 3.1.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 53

3.2.1.1 Structure

The Storagelayer is the focusof the model and containsa number of `components'.

Eachcomponent is an `atom', `link' or `composite'. Eachcomponent in the Storage

layer has a globally unique identi�er (UID) which is used for anchoring purposes

(x2.6.1).

The atom type issimplyanode (x2.3). The structure of anatom isnot the concern

of the Storagelayer, but rather of the Within-component layer.

The Within-component layerdescribesthe structure of atomic components.The

structure of thesecomponentsis not elaboratedon in the model.

The Runtime layerdealswith `instantiations', that is the presentationof a compo-

nent or componentsto the user1:

“Operationally, an instantiation should be thought of asa kind of runtime
cachefor the component. A `copy' of the component is cachedin the
instantiation, the userviewsand/or editsthis instantiation, and the altered
cacheis then `written' backinto the storagelayer.” [49]

A core part of the Runtime layeris a `instantiator function'. When a userconnects

to the systema `session'is created.The instantiator function createscopiesof com-

ponents,asdescribedabove,within this session.The Presentationspeci�cations,both

thosesuppliedto the instantiator function and thosethat existwith every component

in the Storagelayer, affect the manner in which a component is presented.An op-

posite function, `realizer' commits changesin the sessionback into the Storagelayer.

For example,a sessionmay createlink componentswhich are then written back into

the Storagelayer.

3.2.1.2 Summary

The Dexter model has been widely acceptedand has certainly ful�lled the role of

`referencemodel'. The model additionally hasthe intellectual weight of being based

on existing hypermedia systems.However, when analysedagainstthe requirements

for this work, the model hasa number of shortcomings:

1The instantiation of anchorsproduceslink markersasdescribedin sectionx2.7.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 54

� Dexter doesnot explicitly consider the creation of links. It may be possibleto

de�ne links by useraction within the view, but retrieving links for a link-baseof

somedescription is not covered. This leadsto issuesof link parsingdiscussedin

sectionx2.6.1.

� Dexter doesnot discusscompositesin anydetail, implying that only a hierarchi-

cal structure exists,asdiscussedin sectionx2.8.2.

� Inclusion, replacementand removallink actions(x2.5) are not discussed.

� No support for separatedtriggers (x2.7).

� The attempt to maintain strict boundariesbetweenlayersleadsto issuessuchas

thosedescribedin x2.6.1.

3.2.2 AHM

The AmsterdamHypermediaModel (AHM) [51] isanextensionof the Dexter model

and specialisesin modelling relating to multi-media presentations.Hardman et al.

makea distinction betweenthe terms `hypertext' and `hypermedia':

“A hypertext is modelled asa network of componentsrelated through a
setof links anchored in sourceand destination components.. . . Note that
the meaningof visiting a component — that is, the visualeffectsdisplayed
to the user in terms of piecesof text, graphics,sounds,and so forth —
is usuallyconsidered an internal property of the data. . . . [In multimedia]
the componentsare meant to be presentedin someauthor-de�ned rela-
tive order. The existenceof suchan ordering relationship dependson an
explicit notion of time in the model. While the userstill mayhavecontrol
over the selectionof components to be visited, the componentsselected
and presentedcanchangewithout direct userintervention becauseof this
motion of time. . . . [One] way of combining hypertext and multimedia
[is] having eachcomponent of the hypertext model be a self-contained
multimedia presentation.” [51]

In this de�nition, `hypertext' is a linked structure of componentswhere eachcom-

ponent may havea time component, but this component is still fundamentally inde-

pendent. `Multimedia' is a single presentationof components where the placement

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 55

of eachcomponent can be placedalong a time-axis. `Hypermedia' is a linked struc-

ture of multimedia presentations.Note that this is dif ferent from the de�nition of

`hypermedia' usedthroughout this thesis,which treats`hypermedia' asa synonymof

`hypertext'.

AHM allows atomic componentsto be placedin a modi�ed compositestructure

which de�nes relative timing points. For example,a video clip can be con�gur ed to

play in parallel or after another clip. Synchronisation arcs can be de�ned between

componentswhich form a run-time constraint on the ordering of components.

AHM also intr oduces the idea of `link context', previously discussedin section

x2.7, allowing partial replacement.

3.2.2.1 Summary

The Amsterdam model hassomeadvantagesover the plain Dexter model, particularly

in the intr oduction of link contexts. However, aspreviouslydiscussed,link contexts

do not provide the full rangeof trigger behaviours.In other respectsthe Amsterdam

model is broadly similar to the Dexter model in terms of limitations. One noticeable

shortcoming which is preserved in the Amsterdam is the lackof a explicit method for

positioning componentswithin a pageor screen.

3.2.3 Microcosm

Microcosm [35][50] is an open hypermedia systembasedaround the `Microcosm

model'. The Microcosmmodel consistsof two layers,the Document Control System

and Filter ManagementSystem.

“. . . [The] front end of the current system[is] a setof document viewers
of supported media. Theseviewersare managedby the Document Con-
trol System(DCS), which dealswith starting new viewers,and informing
viewersof documentsto be displayed.

. . . [The] processingof messagesfrom document viewers. . . [is handled
by a] taskcalledthe Filter ManagementSystem(FMS). In turn, the FMS
managesa set of tasksthat provide all messageprocessingfunctionality.
Thesetasksor `�lters' processmessageswith certain actions.The FMS re-
ceivesmessagesfrom document viewersvia the DCS (for example`Follow

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 56

FI GU RE 3.2: The Microcosmmodel

Link', `Make Link' etc.) and passesthem on to the current set of �lters.
The logical structure of [the] model is shown in �gur e [3.2].” [57]

3.2.3.1 Summary

The Microcosm model is interesting since systemsbasedon this approach are ex-

pandablein a practical way. Whilst other models may claim expendability by merely

compartmentalising dif ferent conceptsof hypermedia, e.g. storage,displayetc., the

Microcosmmodel considerspracticalissuesof how a hypermediasystemwould actu-

ally work.

There are obvious omissionswhen the requirementsof this work are considered,

e.g. the range of linking actions supported, the lack of triggers etc. However these

limitations are not in themselvesa fundamental design failing of the model, and a

particular implementation could expandon theseareas.

One possibleissueis the `straight line' execution path of the FMS. Consider the

implications of implementing inclusion asa method of document formation. When

a node includesanother node, the referencednode would alsoneed to be processed

by the �lters. This processingmay yield another node that needsprocessing.This

possibility leadsto the suggestionthat the FMS processshould be recursive(x3.6.12).

The model does not consider the mixing of dif ferent media types. Rather, the

DCS will open an appropriate viewer for eachtype. The considerationsin this work

havediscusseddocuments formed of variousmedia types,and so a model for these

purposesshould supported mixed mediadocumentsand how they canbe formed and

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 57

handled(x3.6.10).

3.2.4 OHP andOHP-Nav

The Open Hypermedia Protocol 1.2 [26] is a communication protocol designedfor

usebetweenclientsand hypermediasystems.The protocol is similar in conceptto the

messagespassedaround Microcosm.Note that OHP de�nes only thesemessagesand

not the generalarchitecture of a system.

[26] discussesthe useof `shims' to convert from the OHP to the native form of

the systemand client. Other discussions[3] havesuggestedthat shims may not be

necessary asmany systems/clientswill support OHP natively. However, the conver-

sion to ancommon format isan interestingone, and the sameapproachcould be used

regarding Environment module to client communication in Meles(x3.6.11.2).

The core set of messagessent to the client from the systemis a LaunchDocument

command which instructs the client to open a node. The client may either retrieve

the node itself or requestit from the link server using the GetNodecommand. Note

that the secondoption is only availableif the node datais stored within the link server

itself, i.e. for all other casesa client is expectedto be able to handle the protocols

involved.

After a client displaysa node it can requesta list of anchorsfrom the server, and

whenoneof the `sensitiveareas'associatedwith ananchorisactivatedthe client signals

the server with a RequestServer command.

After OHP 1.2 the OHP wasrede�ned to capture, in principle, all hypermedia

behaviours.OHP would consist of a number of other protocols, and one of these

is OHP-Nav [23] which relatesto navigationalhypermedia behaviours.OHP-Nav is

designedto havea wider scopethan OHP 1.2:

“This version of the protocol has grown much “fatter” than the earlier
version,re�ecting the group's desire to aim towardsa protocol that could
representall navigationalhypertext features,rather than a subset.”

However, [23] alsostatesthat:

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 58

“However, we are not attempting to model the systemsthat havepartic-
ular featuressuchastransclusionsin Xanaduor spatialhypertext systems.
Thesesystemswill probably needto designtheir own interfaces.”

Whilst spatial hypertext is outside the scopeof this thesis, transclusion is not. The

fundamentalaction of transclusionis that of inclusion, which this thesisconsidersan

important modelling aspectand a part of the de�nition of `navigationalhypermedia'.

For the purposesof this work OHP-Nav is similar in scopeto that of OHP 1.2.

3.2.4.1 Summary

The major limitation of OHP against the requirements of this work is that OHP

is purely a description of a protocol for the client-to-systemcommunication. OHP

doesnot describethe overallarchitecture of a hypermediasystem2 or the approachby

which the systemgeneratesdocumentsfrom nodes.

However, OHP is relevantfor the system-to-clientmodelling and translatesquite

well to theserequirements(x3.6.11.2, x3.6.11.5, x3.6.12.1). There are someissues,

for example the use in OHP 1.2 of `from', `dest' and `bidirect' attributes in an-

chors where thesedo not haveany purpose from an implementation point of view

(x3.6.13.1). A similar comment wasmadein [3].

For this work the client should not need to retrieve any nodes,and should only

need to communicate with the system.So whilst OHP 1.23 supports the supplying

of node data asan option for some instances,for this work this should be the only

method of node retrieval.Also note that the format of node datasuppliedimpliesdata

of a known MIME-type asopposedto arbitrary juxtapositionsof content.

3.2.5 OHRA

The Open Hypermedia ReferenceArchitecture (OHRA) [40] is a designmodel for

integrating multiple open hypermediasystems.

The papercommentsthat a protocol suchasOHP is insuf�cient:

2Although it may imply one to someextent.
3[23] doesnot describethe processof node retrieval in OHP-Nav but leavesroom in the standard

for this to be de�ned later.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 59

“During discussionson OHP at the OHS 2.5 workshop, it soon became
apparent that this solution would prove inadequate.Although the pro-
tocol shim would enable thir d party applications to accessa link server
residing on a remote machine, the rich set of tools (e.g. navigation) that
accompanymost contemporary hypermedia systemswould no longer be
availablewith the user'senvironment.”

Unfor tunately the the authors do not elaborate on the de�nition of `navigation'.

However, the implication is that a protocol cannot supply the associatedtools of

hypermedia, for examplelink creation services.The paperarguesthat an alternative

approach is to usean `runtime' on the client machineto provide theseservices.This

runtime can take many forms. It may be speci�cally authored runtime for that par-

ticular client platform, it may be a dynamicallyrequestedmodule to run on a virtual

machine,e.g. Java,or it maybe a hypermediasystem.

OHRA describes,but doesn't de�ne a number of protocols. The `viewer proto-

col' “ hasan almostidentical purposeto that of theoriginal OHP in that it will enable

thir d party applicationsto communicatewith the runtime component”. The `hyper-

media protocol' provides an interfacebetween the runtimes either directly or via a

central `collaboration server'. Additionally a `collaboration protocol' betweenhyper-

mediasystems,document managementsystemsand the collaboration server, provides

collaboration services.Finally, the `document managementserviceprotocol' provides

an interfacefor document managementservices.

3.2.5.1 Summary

The valueof OHRA is in the modelling of interaction betweenhypermedia systems.

Without detailed implementation detailsit is dif �cult to come to conclusionsregard-

ing the effectivenessof the design,howeverthe principlesappearbroadly sound for a

particular approach,although inter-systeminteraction is not a focusfor this research.

The argument that aruntime isneededon eachclient is lessconvincing. In relation

to the unsuitability of purely a protocol, the paperstates:

“One solution is for the userto run a X windows server on their machine
and thus allow the display of the link service tools to be redirection to
their own screen.”

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 60

It should be noted that X itself is simply a protocol and therefore, given that hyper-

media viewersare possibleon X/UNIX systems4, it must be possibleto havethese

behavioursover a network protocol. However, X is not a protocol that attempts to

model hypermedia behaviours in any way, instead describing the transfer of visual

items and the handling of events.In section x3.6.11.1 the requirements for hyper-

media implementation in this work are discussed.The approach here doesnot argue

for any particular protocol, and either hypermedia descriptive(e.g. OHP) or non-

descriptive(e.g. X) are possibleoptions.

3.3 High/low model

3.3.1 Scope

The �rst attempt of this research in modelling hypermediaimplementation considered

a very limited view of linking. Single-destination,uni-dir ectional linking was taken

as the baseand three desirablebehaviourswere identi�ed - bi-dir ectional linking,

multiple destinationlinks and links where the focuspoint within the destinationcould

be arbitrarily speci�ed.

Regarding the �nal of those behaviours,the format of �exible destination spec-

i�cation wasnot explictly considered, but presumablywould allow a suf�x attached

to the URL which would specifya byte, word or paragraphoffset. For example,a

modi�ed URL may look like: http://server/file[paragraph=4] .

As well asoffsetsthe destination could be speci�ed with a search or other query:

http://server/file[search="some text"] .

3.3.2 Theory

The threebehavioursaboveare labelled`high levellinking' 5. This work examineshow

to implement high-level linking on a more limited platform, in this casethe WWW.

4The X displayprotocol is consistentregardlessof whether the application is being run on the same
machineasthe client or over the network.

5This term haspersistedto later models(x3.5, x3.6) although what would be considered `high level'
changeddramatically.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 61

These ideaswere describedaspart of the papers“Goate: XLink and beyond” [62]

and “Goate: An infrastructure for new Web linking” [61].

The limited implementation platform wasintended to supply `low level linking'

support. The principle is that a high-level concept can be transformed to a low-level

concept through a translation process.The low-level representationmay lose the se-

mantic intent although the measurableeffect of the two versionswould be the same.

This is similar to the way programming languageswork. The C++ programming

languagewould be considered high-level whilst assemblylanguagewould be consid-

ered low-level. It is equally possibly to accomplishany programming task in either

C++ or assemblylanguage,and in fact a compiler will convert C++ source code into

assemblylanguage.However, the assemblylanguageversionwill losestructurepresent

in the C++ versionand will be more dif �cult to developin or modify.

As an example,considerhow looping is handled by the two languages.C++ pro-

vides the constructs of for , while and do-while eachon giving a slightly dif ferent

emphasisallowing the programmer to closelymatch their intention. In addition C++

providesgoto to jump to an arbitrary location. Assemblylanguagetypically only sup-

plies a single construct corresponding to goto. It is possibleto re-factor any of the

C++ looping constructs using goto along with if . Consider the following C++ loop:

for (i = 0; i < 10; i++) f
body
g

This canbe re-factored with assemblylanguagelimitations6 as:

i = 0;
:label
j = i - 10;
ifzero(j) goto end;
body
i++;
goto label;
:end

6This example is actually slightly kind to assemblylanguagein that it presumessimple variable
handling.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 62

Again, thesetwo forms haveequivalent effect. Note that aswell asbeing harder

to read, the pseudo-assemblyversionhaslost the structure of the loop, and it is not

possibleto determine the type of loop originally used.

The high/low model simplystatesthat givenasuitablyexpressivelow-level linking

languageanyhigh-level linking behaviourcanbe expressed.

3.3.3 Low-levelrequirements

The requirementsfor the low-level linking languagedependon the rangeof high-level

languagesthat need to be modelled. In section x3.6.11.1 this topic is revisitedwith

the changein high-level de�nition intr oducedby Meles(x3.6). However, considering

the de�nition of high-level shown above and the implementation environment of

HTML/WWW the conversionfrom high-to-low level form canbe carried out in the

following way:

Behaviour Emulation
Bi-directional link Two uni-dir ectional links pointing to

eachother.
Multiple destinations n uni-dir ectional links starting at a

common point.
Flexible destination speci�cation Placement of a

tag at the appropriate point in the des-
tination document. The source link in-
cludesthis label aspart of the destina-
tion speci�cation.

The �rst and thir d of these emulations requires write accessto the destination

document, which for a document on the WWW will typically not be available.This

issuewasside-steppedby usingaHTTP proxy to alter documentsasthey passthough,

effectivelywriting at point of delivery (x4.4.3.1).

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 63

FI GU RE 3.3: Nottingham model

3.4 Nottingham model

The Nottingham model wasan attempt to expandon the high/low model by sepa-

rating the linking processin severallayers.The Nottingham model is representedin

�gur e 3.3.

The concept of Source captures the link asstored in somearbitrary storagesys-

tem. There may be multiple instancesof Source components in a system.Language

describesthe link speci�cation extractedfrom a Source.

CLS is an intermediary form of link speci�cation which is neither representative

of any particular high-level link speci�cation nor tied closely with implementation.

Instantiations of the Languagelayerwould createlink speci�cations in this form and

instantiationsof the Display and Movement layerswould interpret them for the rele-

vant implementation environment. There is only one CLS instancein a system.CLS

becamethe Intermediatelayerin SLIPA andthe conceptisdiscussedfurther in section

x3.5.4.

Displayrefersto the generationof codewhich stylesthe link. This wasexpectedto

include, for example,the codeto makeamultiple-destination link `pop-up' on screen.

Finally, Action refersto the generationof the instruction to makethe link active,e.g.

the actual<a href> tag in the caseof HTML.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 64

FI GU RE 3.4: Exampleimplementation of the Nottingham model

3.4.1 Multiple languages

Figure 3.4 was originally included in a presentationgiven to the Web Technology

Research Group when intr oducing the model. The �gur e showshow a systembased

on the model can incorporate many link speci�cation languagesobtained from many

sources.`Dlink' wasa data-typeusedin Goate at this time to hold the effect of links

in a common format.

3.4.2 Summary

A number of problems are encountered with this model. Firstly the model implies

`strong layering' which is not applicable.Strong layering is shown by the 7-layerOSI

network model [80], the layersof which are shown below with abridgeddescriptions

from [89]. The readermay �nd it easierto readfrom the lowest layerto the top.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 65

Layer Description
Application Providesa mechanismfor applicationsto interface

with the OSI stack.
Presentation De�nes the format of data to be exchangedbe-

tween two applications.
Session Controls the `dialogue' betweenapplications.
Transport Providesamechanismfor the exchangeof databe-

tween two systems.
Network Handles the passingof databetweentwo systems.
Datalink Provides error detection and control over the

physicallayer.
Physical De�nes how bits are passedbetweendevices.

Each layer in the OSI model builds on the abilities of the one beneath it. Each

layerprovidesan `API' to the one aboveit which abstractsthe implementation details

of the layer. The principle is that instancesof eachlayertype canbe interchangedwith

no effect on the instancesaboveand below. Similarly, no layershould require details

of the workings of lower layers.

The cumulative effect of the OSI model is lacking in the Nottingham model.

For example,it is not obvious that the concept of `Source' builds on the abilities of

`Language', or that `Display' builds on `Movement'. Rather the Nottingham model

is reallydescribinga processing�ow . SLIPA makesthis distinction clear.

Furthermore, it is doubtful how interchangeableinstancesof the layersactually

are. For example,both Display and Movement are tied closelywith a particular im-

plementation environment and it is not clear that an instanceof one of theselayers

could be replacedwithout replacingthe other. Again, relating to Display and Move-

ment, the necessary information for Movement is not passeddown through Display,

which only generatescode relevant to the styling of the link. Theseissueswere not

satisfactorilyaddresseduntil the Melesmodel.

The data�ow in the OSI model is 2-directional, i.e. datapassesboth up and down

the model. In the Nottingham model there is no `upward' �ow of data.

Due to theseproblems the Nottingham model asdescribedhere wasshort-lived

and wasdevelopedfurther to becomethe SLIPA model (x3.5). However it is worth

rememberingthat the model did intr oduceanumber of conceptswhich havepersisted

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 66

through SLIPA and into Meles(x3.6):

� Separationof link speci�cation from the implementation of the speci�cation.

� The conceptof a distinct sourcewhich storeslink speci�cations.

� The Nottingham model suggestedthat link-speci�cations were extractedfrom

a Sourceand processedby Languagecomponents.This ideapersistedin SLIPA

and Meles.

� The ideaof multiple, simultaneously-activelink languageprocessors.

� The ideathat multiple languagesmayshare a common source.

� The use of a common intermediary format to describe links to allow inter-

operation betweenunrelatedlink processingand link implementation sections.

3.5 SLIPA

The SLIPA model built on the ideasof the Nottingham model (x3.4). The goal for

SLIPA wasto addressthe shortcomings of the Nottingham model discussedin x3.4.2

and to provide a completeapproachto link implementation.

The SLIPA model consistsof the �ve `layers'shown in �gur e 3.5. The initial of

eachlayer is taken to give the model its name. An instantiation of a layer is called a

component.

The term `layer' is preserved from the Nottingham model, although SLIPA does

not claim to be strongly layered. The model is uni-dir ectional; there is an information

�ow down the model but not upwards.

3.5.1 Link actions

SLIPA de�ned two linking actions:traversaland inclusion. Traversalis simply the re-

placementof the current viewwith adif ferent view. Inclusion wasde�ned asincluding

the target in the current view, with the note that the target may or may not replace

a section of the current view. This de�nition of inclusion is closer to the de�nition

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 67

FI GU RE 3.5: The SLIPA model

of `replacement'which is intr oduced asa general link action in section x3.6.1. The

model recognisedthat the separateaction of calling an external program, although

this wasnot captured aspart of the model.

SLIPA de�ned threelink direction behaviours.A link maybeuni- or bi-dir ectional,

or haveno direction bias.A uni-dir ectional link, asexpected,allowsmovement from

a–b but not b–a. A bi-dir ectional link allowsmovement from either end-point to the

other.

A non-directional link behavessimilarly to a uni-dir ectional link, the dif ference

being semantic.To mark a link non-directional is to saythere is no concept of nav-

igation. For example,imagesare included in WWW pagesby an act of linking, this

would be an exampleof non-directional linking.

3.5.2 Sourcelayer

In SLIPA the Source layerrepresentsthe data-store containing the link speci�cation.

This store cantakemany forms. In caseof embeddedlink speci�cations,e.g. HTML,

the Source is considered to be the document itself, although more accuratelythe

sourceis asubsetof the document. The Sourcecould equallybe adedicatedlink-base

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 68

[35][20] or a collection of link-generating rulesto apply [59].

In implementation terms the Source component will often be an interface to a

data-store rather then the entire data-store itself. For example,given links stored in a

relationaldatabase,the Sourcecomponent would provide a setof routines to retrieve

links from the external database.The API presentedby a Source component should

beknown anddocumented,allowing anyLanguagecomponentsin the systemto have

accessasneeded.

Note that SLIPA doesnot de�ne or model the structure within Source compo-

nents.

3.5.3 Languagelayer

The Languagelayer contains processingfunctions that evaluatelinks of a particular

speci�cation. Therefore aLanguagecomponent must be able,when givenahyperme-

dia (or a subsetof a hypermedia) and a collection of link speci�cations, to locate the

endpoints of the links.

A Languagecomponent retrieveslinks from one or more Sources.For HTML the

Languagecomponent would draw from a singleSource, the document itself, whilst a

XLink [31] component would additionally referencea link-base.An examplesystem

implementation may look like �gur e 3.67. This is similar to the top part of �gur e 3.4,

although the Nottingham model only considersgeneralownershipof rolesand does

not seekto explaindetailedprocesses.

The SourceandLayerstogether are namedthe “User Languagelayers”,signifying

that these are the areaswhich deal with linking speci�cations as used by the link

authors.

A Languagecomponent usesthe API presentedby aSourcecomponent to retrieve

the raw , i.e. `asstored', links8. This is a conceptualdata-�ow, asin terms of imple-

mentation the Languagecomponent(s) may call the Source component(s) directly,

or equally the enclosingapplication may call the link retrieve function in the Source

7Note the changesbetweenthis viewof the relationshipbetweenSourceandLanguagecomponents
to that in x3.6.8.

8This raw format maybe a text string, a databaserecord etc.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 69

FI GU RE 3.6: Examplelink components

component and passit to the link evaluatingfunction in the Languagecomponent.

The Languagecomponent declaresone or more IDOs, asdiscussedin the next

section,using the API asde�ned by the enclosingapplication.

3.5.4 Intermediatelayer

The Intermediatelayeris a representationof links independentof the User Language

and Implementation layers(x3.5.6, x3.5.7). Data objects named Intermediate Data

Objects (IDOs) are created in the Intermediate layer by the Languagecomponents

calling API functions. The Intermediatelayeris the equivalentof the CLS layer(x3.4)

in the Nottingham model.

EachIDOrepresentsa singleone-to-one link. From this basismore advancedlink-

ing behaviourscanbe built by the useof multiple objects(x3.3.3). In somecasesIDOs

will `overlap' a certain area, i.e. a given point may be captured by a spanmember

of more than one IDOobject. Given links imported from a number of sources,the

overlapping may come from a single source link, e.g. a multiple destination link, or

could be entirely coincidental, e.g. two uni-dir ectional links which happento refer to

the samearea.

Rememberthat the IDOformat treatsall links asindependent and doesnot pre-

serve the semanticintent of the original link speci�cation. That is, when examining

one IDOit isnot possibleto tell whether that IDOispart of abi-dir ectional link and/or

a multi-headed link. This effect is neither deliberatenor a failing of the model com-

pared to the higher level structure discussedin sectionx2.4. The semanticintent by

this stageof link processingis no longer relevant,asthe Intermediate stageis con-

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 70

cerned with getting links into a statereadyfor implementation. The User Language

layersmaymodel links asmulti-headed, bi-dir ectional etc. asappropriate.

The Intermediate layer providesa buffer between the User Languagelayersand

Implementation layers,and shieldseachfrom having to understandthe workings of

the other by providing a common interchangeformat. Furthermore, once the Imple-

mentation componentshavebeen shown to perform correctly againstthe full-range

of the applications' IDOspeci�cation, they will by de�nition work with anyUser Lan-

guagecomponentsin the system.

SLIPA doesnot de�ne exactlythe format of the IDO, for two reasons.Firstly, to do

so would tie the model too closelyto one particular implementation. This principle

haspersistedto the de�nition of the IDO-equivalent in Meles (x3.6.13). Secondly,

there wasa reluctanceto de�ne a level of `minimum ability' for a systembasedon

SLIPA9. This second justi�cation was basedon the then current understanding of

link implementation, and doesnot apply to the Meles-eramodel (x3.6.1).

The contentsof the IDOstructure in SLIPA were de�ned asSubject,Object, Trig-

ger and Dir ection. Subject and Object referred to the end-points of the link, and

Trigger to the activatorof the link. Triggershavebeenpreviouslydiscussedin section

x2.7) and the discussionsof triggers relating to SLIPA do not offer anything new.

However, it should be noted that the realisationthat triggers were an independent

part of link structure camefrom developingthe SLIPA model.

3.5.5 Spans

The work on SLIPA wasfundamental in the developmentof the modelling of spans

(x2.6).

To de�ne the Spanclass,SLIPA �rst describedthe Point class.A `point' is a zero-

sized location with media-space.A point is independent in that it requiresa parent

data-typein order for its location to be evaluated.From this base,the areacaptured

by a span is that delimited by a number of points, or in OO form, the Spanclass

containsmultiple Point members.

9Rememberthat SLIPA wasintended asa genericmodel of linking implementation, not speci�cally
one for Goate.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 71

There is acritical dif ferencebetweenthis approachand the approachtakento span

implementation in Meles(x3.6.13.2). Aspreviouslydescribed,in SLIPA Point objects

can stand alone asthey contain their own node location information. Under Meles

Point objectsdo not contain node location information and so there is a dependency

on a Spanobject to fully resolvethe location.

The SLIPA de�nition initially made sensein terms of a logical object-orientated

structure, and additionally it allowed spansacrossseveralnode-types.For example,

consider a view which features an image with a caption. The SLIPA Span/ Point

de�nition allows the imageand caption to be captured with a single span.However,

the SLIPA de�nition of thesetypesintr oducedvariousproblems,asdetailedin section

x3.5.8.3, leading to the changeto the Span-dependentde�nition (x3.6.13.2).

3.5.5.1 Locators

It is the role of eachLanguagecomponent to declare and evaluatethe Locator object

within the Spanobjectspresentin eachof the Subject , Object and Trigger objects

within the IDO.

In SLIPA a locator is a copy of the link speci�cation in a textual format and a

referenceto the Languagecomponentwhich processesit. Locatorsservetwo purposes

in the model. Firstly, they allow the Value member in a Spanto be re-calculatedif

there is any changein the node or nodesthe spanis basedon. Secondly, they allow

the Value part to be left unde�ned and only when calculatedwhen needed.

Consider the casewhere an embedded link declares a destination, or object, of

“the �rst paragraphin node x to include the word `�sh' ”.

The precisevaluesfor the object spancannot be calculatedat the time the link is

parsed,sincethe contentsof node x are unknown. One approachwould be to retrieve

x, which is possibleif the Languagemodule concerned would haveaccessto the same

transport methods asother parts of the system.However this would still leavetwo

problems.Firstly, x may changebetweenthe time the link is declared by the module

and the time the link is activated.Secondly, if the pagecontaining the speci�cation

hasmany links of this type, the systemwould be required to makea large number of

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 72

often slow requests,although in this caseonly one possibility is needed.

The useof locatorscanhelp here. Insteadof calculatingthe exactobject span,the

Languagecomponent can declare a locator for the object spanwhich describesthe

link speci�cation. At the time the link is activatedthe systemwill call a function in the

Languagecomponent which will calculatethe exactpositionsand populate the Value

member.

Note that the locator mayor maynot be in the sameformat asthe original speci�-

cation. Even in the caseof textual link speci�cationsit is anticipatedthat considerable

ef�ciency gains can be made by storing the speci�cation in machine-friendly rather

than human-friendly format. Asasimpleexampleconsidera link speci�cation in XML

format. The parsing stagefor the speci�cation is relatively complex as white space

must be skipped, entities evaluatedand string end-points discovered etc. Once the

speci�cation has been parsedthe systemcan store the samedata in a textual man-

ner more suitablefor rapid parsingthan human readability. Taking a simpleattribute

“ animal="camel" ”, onceparsedthis could be stored by including the length of each

string before the string, e.g. “ 006animal005camel” which eliminatesstring end-point

searches.Furthermore,entitiescould bestored in their nativebinary format andwhite

spaceoutside of quotessimply not stored.

The useof locators is optional sincein someunchanging systemssuch asa self-

containedhypermediastored on CD-ROM they are redundant.However, most active

systemswill require locators.

3.5.6 Presentationlayer

The taskof the Presentationlayeris to render into the environment the effectsof the

the presentationattributes of the Subject , Object and Trigger objectscontained in

an IDOobject. This requiresa presentationcomponent to be able to processall node

typeshandled by the application, then alter them according to the rangeof allowed

presentationspeci�cations. For example, the presentationcomponent may have to

adjust the background colour of a spanwhich is to be usedasa trigger.

Additionally the presentation layer composescomposite views from individual

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 73

nodes. For example, for an inclusion type link the presentation layer must be able

to alter a view to include the object node10. In an environment where the method

of displayis distinct from the methods of creating and acting upon triggers, the Pre-

sentation layer is the only part of the systemthat needsto be able to `write into' a

view.

3.5.7 Action

The Action layer concerns the declaration of and acting upon triggers. An Action

component declares triggers to the environment when the view is presentedto the

user. When a trigger is activated the Action component calls functions within the

hypermedia systemto effect the linking action. For example,an Action component

maycall a Presentationcomponent to include content in the current view.

In the caseof instant triggers, the Action component would act on the link

without declaringany triggers to the environment.

3.5.8 Summary

3.5.8.1 Contribution

SLIPA madethe following signi�cant contributions to the developmentof an imple-

mentation model:

� Initial modelling of the Spanand Point classes.

� Initial modelling of triggers.

� Initial modelling of locatorsand a model for using them.

� The intr oduction of non-traversallinking, i.e. inclusion.

10Naturally, only a part of a object node may be referencedusing the Spanmember of the Object
object. In this caseonly that spanwould be included in the view.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 74

FI GU RE 3.7: Hard to interpret span

3.5.8.2 Documentmodelling

The SLIPA model failed to recognisethe importanceof linking asaform of document

creation and treatedlinks asan overlayto documents,rather than the core mechanics

of documents.That is, given that using SLIPA and the `inclusion' action it is possible

to form a compound structure of variousnodes,it wasunclearhow this dif fered from

document generation.This wasrecognisedand incorporated into Meles(x3.6.2).

3.5.8.3 Spancomplexity

The de�nition of spansin x3.5.5 leads to severalproblems, which are dif �cult to

resolve.Sincea spanis a collection of points and eachpoint hasan independentnode

location, it is possibleto de�ne spanswhich exist acrossseveralnodes.A description

of SLIPA should considerhow a systembasedon SLIPA would handle this case.

Where the nodesbeing considered are presentedin the sameview, it is possibleto

de�ne ruleswhich de�ne which areasof the view are captured by the span.Consider

�gur e 3.7 which showsa section of a view consisting of an image and a section of

text along with threepoints which delimit a span.Presumablythe entirety of the text

would be captured by the span,but it is not clearwhat sectionof the imagewould be

captured. Figure 3.8 showsa rangeof possibleinterpretations.

In the casewhere two or more nodesare not part of the samepane, it becomes

even more dif �cult to decide which areasof eachnode should be captured by the

span.Sincethere is not obvious spatialpositioning, the interpretation would haveto

be basedon someother property and the relation of that property to the format of

the points.

Thesetwo casesdemonstratedthat the SLIPA method of representingspanswas

fundamentally�awed andneededto be reworked.At this point developmentsplit into

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 75

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

FI GU RE 3.8: Possibleimagespaninterpretations

two directions.Firstly, amodi�ed spanformat basedon asinglenode location wasde-

velopedaspart of Meles (x3.6.13.2). The secondbranch of developmentconsidered

a radicallydif ferent approachwhere the content of the systemwashighly connected,

allowing spansbetweencontent to be considered regardlessof spatialpositioning in

the view. This work developedinto Atomic Hypermedia(x5).

3.5.8.4 Implementation layers

The Presentationand Action layersare a slight improvement over the Display and

Movement layersin the Nottingham model sincethere is no longer the implication

that one builds upon the other. However the distinction betweenthesetwo layersis

still not clear.

In order for instancesof thesetwo layersto work together there must be a �ow

of information betweenthem, outside of the model perse. This sidechannelof infor-

mation is likely to end up proprietary betweendif ferent implementationsof the two

layersbreakingthe abstractionof the model. It wasneverclearthat the Implementa-

tion layersin SLIPA would not be better merged into a single layer.

3.5.8.5 Link dir ection

SLIPA treatslink direction asif it is an important factor in link implementation, in-

cluding a direction member in the IDOclass(x3.5.4).

On further examinationit becameclearthat link direction is not important at the

implementation level, since the mechanicsof a link are the sameregardlessof the

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 76

direction being considered. De�nitions suchas`forwards', `backwards' and `no direc-

tion' are often useful at the level of high-level speci�cation and theseterms may be

usedto providedefault settingsfor a link within anIDO (x3.6.13.1, x4.7.1). However

the inclusion of direction asa core memberof an IDO structure wasincorrect.

3.5.8.6 Inter mediateleveltype

The `type' of the Intermediate layer seemsinconsistent with the rest of the model.

Instancesof the Languagelayerare clearlyprogrammed, i.e. plug-in or modules,and

the samecan be said for the Presentation,Action and Source layers.However, it is

not clear that the Intermediate layer is programmed and the description in SLIPA

describesthe layerasbeing more a stateof datathan an executable.

This highlights anotherproblem. The model lacks`co-ordination', in that it ishard

to seehow asystembasedon SLIPA would executethe processof link implementation

in a structured way. A large amount of the `intelligence' of the systemwas placed

within the implementation layers,and so would be duplicated for a systemwhich

worked in multiple environments.

These two issueswere resolvedby the intr oduction of the Broker (x3.6.9) in

Meles.

3.6 Meles

The Melesmodel developsthe SLIPA model further andaddressesthe issuesdiscussed

in sectionx3.5.8. A key part of Meles is its increasedscopewhen compared to anyof

the previousmodelsdiscussed.Melesmodelsthe generationof documentsasa logical

extensionof linking behaviour.

3.6.1 Expandedbehaviours

Whilst the initial discussionsof the high/low (x3.3) and Nottingham (x3.4) models

considered only traversallinks, SLIPA (x3.5) intr oduced the idea of `include' links

which bring content into the current view. This inclusion mayreplaceexistingcontent

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 77

in a pane.

As part of the developmentof Meles the core ideasbehind the SLIPA de�nitions

were kept although the terms were re�ned:

� Traversal— The entire paneis replacedwith a new pane.

� Inclusion — Content is included into the current pane.

� Removal— Content is removedfrom the pane.

� Replacement— Content in the paneis replacedwith other content.

Theseterms form the common view of link actionsdescribedin sectionx2.511. In

all casesthesedescriptionsare only usedfor describingthe userexperienceof linking

and do not relateto the implementation of the linking behaviours.

For implementation purposesMeles models all of the abovebehavioursusing a

single action, `replacement'.Replacementis capableof modelling all the other be-

havioursproviding that either the subject or object of the link may referencea zero

amount of media or `null'. In terms of implementation the behavioursabovecan be

modelled as:

� Traversal— Subjectis the entire pane,object is non-null.

� Inclusion — Subjectis null, object is non-null.

� Removal— Subjectis non-null, object is null.

� Replacement— Subjectand object are non-null.

Thesede�nitions showthat traversalissimplyaspecialcaseof (userexperience)re-

placement.A systemdesignermay�nd it usefulto recognisetraversal,asthe complete

changeof panemay be signi�cant. For example,the meta-datatitle of the panemay

changefor traversalbut not for replacement.Additionally, the changeof pane may

provide opportunities for the systemto simplify the tracking of the paneasdescribed

in sectionx3.6.12.4.
11Note that `inclusion' in SLIPA hasbeenseparatedinto `inclusion' and `replacement'.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 78

The de�nitions aboveare missingone possiblecombination of subjectand object.

For completenessthere is one further de�nition:

� Empty — Subjectand object are null.

The `empty' action simply resultsin no changeto the view. There are situations

where this action mayarise.For example,a `removal' link maybe speci�ed where the

subjectis not de�ned at link declarationtime but calculatedwhen the link is activated

by the useof a locator (x3.5.5.1). If the link is activatedand the subject cannot be

calculated,e.g. a particular label is searched for but not found, the `removal' link

becomesan `empty' link.

3.6.2 Documents

The linking behavioursdiscussedaboveallow a user to include media within media,

and this presentsan issueregarding how documentsaremodelled in relation to nodes.

Sectionx3.5.8.2 raisedthe questionthat if linking allowsarbitrary content from nodes

to be included in nodes,what is the dif ferencebetweentheseactionsand document

formation?

It becameclearthat there wasno dif ferencebetweenthe two conceptsand this led

to the view of documentsand nodesdiscussedin sectionx2.8.

One aim of the Melesmodel is to model document formation, aswell asarangeof

linking actions.With the relativelysimpleaddition of modelling the storageof nodes,

the model is ableto capture the completescopeof document formation.

3.6.3 Designoverviewand terminology

The Melesmodel abandonsany pretenceof being layered and the term `layer' is not

usedto describeparts of the model. Instead, the term `constituent' is usedto refer to

a sectionof the model with an assignedsetof rolesand responsibilities.

Within the model there are two classesof constituent. An instance of a pro-

grammedconstituent is calleda `module'. A `programmedconstituent' is one which

is realisedwithin the systemby the writing of software code. As is describedin later

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 79

sections,someconstituent classesare not realisedin sucha wayand their placewithin

the model is to capture the conceptof adatastore. An instanceof anon-programmed

constituent is calleda `store'.

The emphasison the work `instance'aboveis to showthat all partsof the model are

solelyof type `constituent' when considered in the abstract.The dif ferencesbetween

the two typesof constituent becomerelevantwhen considering particular instantia-

tions of the type.

Like its two predecessorsof Nottingham and SLIPA, Meles is designed to aid

the designand implementation of hypermediasystemswhich are expandablein terms

of linking languagesprocessed.Additionally, Meles is designedto be expandablein

terms of the retrievalof data, the processingof dif ferent media typesand hasa much

improved model of expendabilityin terms of the implementation environment.

The Meles model consistsof sevenconstituent parts. Mor e than one instance

of eachconstituent can be active simultaneously, with the exception of the Broker

(x3.6.9) which performsthe centralco-ordination role missingfrom SLIPA (x3.5.8.6).

Figure 3.9 showsthe constituentsof the model. Note that with the exceptionof

the Broker constituent, constituentsbelong to one of threeareasof interest: Nodes,

Links and Implementation.

3.6.4 Data typesandmethod names

The Meles model describesrelevantdata-typesin generalterms. ClassessuchasLED

are intr oduced (x3.6.13) and the internal format is discussedin terms of other classes

which will form part of the class.However, exactimplementation detailssuchasprim-

itive typesusedare not discussed.

Equally, classmethods are named and described, e.g. canHandle() in section

x3.6.6, to illustrate core conceptsonly and in practicedif ferent namesor calling struc-

turesmaybe used.

The purposeof Meles is to guide design,not to provide a complete speci�cation.

The architect of a particular systemshould formalisea speci�cation and publish an

API to the authorsof modules.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 80

FI GU RE 3.9: The Melesmodel

3.6.5 Content

The Content constituent representsthe storageof nodes. Instancesof Content are

storesnot modules and therefore no code is written, within the scopeof the model,

to implement aContent store. Code will be written to interfacewith aContent store,

further describedin sectionx3.6.6.

The store itself is an arbitrary storagesystemwhich mayor maynot be part of the

greaterhypermedia application (x3.1.1) itself. The hypermedia application may only

havelimited accessto the nodes,e.g. it canreadthem but not alter then.

The content in the store is nominally unstructured. The storageof the nodesmay

have structure throughout or in part, but this structure is irrelevant to the model.

However although structure is irrelevant to the model per se, it may or may not be

relevant to a particular systemimplemented using the model. An exampleof this is

given in sectionx3.6.7.

Each node must be uniquely addressedacross all stores. The native format of

addressesmay vary, but it in eachcaseit must be possibleto representthe addressin

a common `node location' or Nodeloc object. The format of the Nodeloc structure

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 81

is determined by the systemdesigner. As a simple example,the structure may simply

consistof a string to hold the location on a �le systemor URI. The Nodeloc classis

discussedfurther in sectionx3.6.13.2.

3.6.6 Transport

A Transport module interactswith one or more Content storesand facilitatesreading

or writing of data. Each Transport module is responsiblefor handling transfer pro-

tocols with the relevant Content stores. These transfer details are hidden from the

rest of the system.The data retrieved is a node in the widest senseof the word and

includes not only hypermedia nodes in the senseof plain-text, imagesetc. but also

any contained section of data. Section x3.6.7 describeshow Transport modules can

be usedto retrievelink speci�cations.

Although there is no technical reasonwhy a single Transport module can not

handle multiple addressspacesand protocols, a better approach is for modules to be

assmall aspossiblewith multiple modules providing the necessary rangeof abilities,

asthis givesthe administrator of a system�ne grained control over which Transport

modules to make available.There is no advantagein having fewer, larger Transport

modulesrather than manysmallmodules.

EachTransport module suppliestwo keyfunctions. The �rst function, canHandle() ,

returns if the module is capableof handling a particular Nodeloc object, with module

replying in the negativeif the protocol is unrecognisedor the requestedmediaspace

is unreachableby the module.

The secondfunction, get() attempts to retrieve a node speci�ed by a Nodeloc

object. This function mayreturn “inappropriate” asbefore, but mayalsoreturn errors

relating to avalid attempt to retrievethe node. For example,aTransport module may

support HTTP transfers(x4.5.1) and when passeda Nodeloc object containing a

HTTP URL would return positively to canHandle() , but on attempting to retrieve

the node it may �nd the server is unavailable.

Having both canHandle() and get() functions allow an addressto be assessed

for validity, if not availability, without having to actually retrieve the node. In some

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 82

casesit may not be possibleto check if a node is available without having to make

either a full or partial request.For example,it is possibleto checkfor the existenceof

a node accessedvia HTTP by using the `HEAD' command which retrievesmeta-data

relating to the node without retrieving the full contents. However, evenwith HEADa

network connection must be established,which will be a signi�cantly slower process

than merely ensuringthat the addressin the Nodeloc seemssensiblefor this module.

Transport modules are owned by the Broker (x3.6.9) but are availableto other

parts of the system.For example,a Languagemodule (x3.6.8) may usethe available

Transport modules to retrieve link speci�cations from a Source (x3.6.7) store which

is accessedwith standard protocols. In other casesa Languagemodule may need to

examinea collection of nodes to discover link relationships,e.g. the link discovery

mechanismsin [4][9][56].

Transport modules would, typically, not be accessibledirectly but via a handler

function suppliedby the Broker. The handlerwould query eachof the availableTrans-

port modulesand passthe requestto a suitablemodule, and return the resultsto the

caller. The caller would not know which Transport module serviced the request.By

basingthe evaluationstrictly on ability to service the request,the designavoidscases

where a caller function, in any part of the system,insistson a particular Transport

module being available.This is considered desirableasit keepsa systemlooselycou-

pled and if for reasonssuch ascost, licensing or security an administrator wishesto

replacea Transport module which servicesone classof Nodeloc with a functionally

equivalent one, it is possibleto do this without breaking the dependenciesof other

parts of the system.

Figure3.10 showsanexamplesystemimplementation of noderelatedconstituents.

In this systemnodesare retrievedfrom threeContent stores,the WWW, an Intranet

and a collection of �les on a network attachedserver. Thesenodesare retrieved by

two Transport modules,namedafter the protocols they support.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 83

FI GU RE 3.10: Exampleinstantiatednode constituents

3.6.7 Source

An instanceof a Source component is a store which holds link speci�cations.This is

analogousto the waya Content store (x3.6.5) holds nodes.

A Source is any information that canbe interpreted asa link speci�cation, so it is

a matter of perspectivewhether to considersomedata, of arbitrary granularity, asa

Source.The examplesof Sourcesin SLIPA (x3.5.2) are still valid here.

One extra examplewhich �ts into Melesmore cleanlythan it doesin a discussion

of SLIPA is that of using the structure of nodes themselvesas a link source. Such

an approach is usedin WHURLE [71][73] where the positions of pageswithin the

hierarchy de�ne the `structural links' within the system.Whilst a SLIPA Sourcecould

capture this conceptby making aSourcecomponent that hadaccessto the pagestore,

under Melesthe pagestore itself is captured within the model.

It is important to note that Source, like Content, is a concept rather than an

instancewhich canbe clearlyidenti�ed. This conceptcapturesanything which deter-

mines the declarationsmade by a Languagemodule (x3.6.8). In an extreme casea

Languagemodule could be createdwhich declaresrandom links. Evenhere there is a

Source for the links: the system'srandom number generator.

Note that the de�nition of Source in Meles is signi�cantly dif ferent to that in

SLIPA x3.5.2. In SLIPA an instanceof a Source layer was a programmed compo-

nent which interfacedwith a particular source of link speci�cations and supplied an

API for Languagecomponents to retrieve speci�cations. The API supplied wasnot

standardised,but would be publishedby the authorsof Languagemodules.

The SLIPA method raisesa couple of issues.Firstly, if there were two Sources

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 84

that both retrievedspeci�cationsusing a common protocol, eachSource component

would have to implement the protocol, leading to code redundancy. In Meles this

problem hasbeensolvedby the useof globally availableTransport modules(x3.6.6),

a solution which could haveequallybeenappliedto SLIPA.

Secondly, the useof non-standard APIs for the Source componentsmakesit dif-

�cult for a Languagemodule to call on a number of Sources.Under Meles a link

speci�cation, or group of speci�cations, can be retrieved by passingthe appropriate

Nodeloc to the Transport modules. Even if SLIPA wasmodi�ed to standardise the

communications betweenSource and Languagecomponents, there would still be a

requirementfor aLanguagecomponent to know which particular Sourcesto consult.

Meles takesthat view that in caseswhere two distinct parts of the model form a

strongly connected pair basedon proprietary information, the abstraction is �awed

and there is an argument to merge those areas12. In this instancethe parts of the

Sourcelayerfrom SLIPA which relateto deciding which resourcesto query aremoved

into the Languageconstituent, leavingthe Sourcean abstractstore.

The trade-off of this approach is that with Meles the scopeof the Languagecon-

stituent hasincreasedto include `knowledge' about how to interfacewith proprietary

Sources.However, the useof Transport modules often reducesthis requirement to

knowing the node locationsof the speci�cations.

3.6.8 Language

Given a `context', a Language module declares links to the system. A context

(x3.6.12.2) consistsof a node and meta-datasuch as the Nodeloc for the node. A

Languagemodule suppliesa function nameddeclare() which performs this opera-

tion.

This de�nition is accuratefrom the point of view of how Languagesmodules �t

into the implementation of linking, although it doesobscure the fundamentalpurpose

of Languagemodules in the model which is to allow the interpretation of arbitrary

linking speci�cations.

12A similar caseexists for the SLIPA Presentation and Action (x3.5.8.4) components which are
strongly interconnected.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 85

FI GU RE 3.11: Examplelink constituents

These link speci�cations are retrieved from one or more Sources(x3.6.7) then

interpreted. Links relevant for the current context are declared in LED (x3.6.13)

format. It is within Languagemodules that proprietary, high-level link speci�cations

are interpreted into a common format.

As previouslymentioned, although the constituent view of the model showsthe

Languageconstituent communicating directlywith the Sourceconstituent, in practice

Transport modulescanoften be used.

Note that the link speci�cationsare not necessary retrievedat the time declare()

is called. In some casessuch as GHURLE (x4.7.4) which are basedaround �xed

linkbases,speci�cations can be retrieved and interpreted during initialisation of the

Languagemodule and then stored within the module. In other casessuch aswhere

link speci�cationsareembeddedin the node, the retrievalhasto bedone in declare() ,

although in the caseof embeddedlinks the `retrieval' is a search of the node rather

than a requestfor a remote resource.

3.6.8.1 Example

An examplearrangementof implementedSourceandLanguageconstituentsis shown

in �gur e 3.11. Note that although this �gur e is identical to �gur e 3.6 from the SLIPA

discussion,the approachesof the two modelsdif fer asdiscussedin sectionx3.6.7.

3.6.9 Broker

The Broker is the hub of the link implementation processasdescribedby Meles,and

performs a co-ordination role.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 86

The Broker is the logical owner of all of the other modules in the system,and

where necessary provides an interface for modules to accessthe methods of other

modules,e.g. the availabilityof Transport modules throughout the system.In short,

the Broker seesall modulesand all modulesseethe Broker, howeverno module can

seeanyother module directly13.

The Broker containsthe realiser() method describedin sectionx3.6.12 which

usesthe abilities of the modules in the systemto implement linking. Note that the

Broker itself doesnot havethe ability to processanyparticular mediatype, link speci-

�cation or communicationsprotocol or to interfacewith a client.

3.6.10 Media

Media modules perform operations on node data-types.There are four operations

provided by mediamodules:join() , select() , merge() andconvert() . A particular

mediamodule will support one or more of theseoperationsfor a setof media types.

join() andselect() arerelatedto the implementation of linking, whilst convert()

and merge() provide a service to the system,particularly to Environment modules

(x3.6.11.

3.6.10.1 Implementing linking

Sectionx3.6.1 describedhow link realisationcan be modelled using the single oper-

ation of `replacement'.The �rst role of Media modules is to perform this operation

from combinationsof arbitrary media types.

The instinctive way to achievethis is to havea Media module, or setof modules,

which handle dif ferent combinations. For example,a module to replacetext with

an image, a module to replacea section of an image with text, etc. However, asan

increasingvariety of media is processedby the system,the number of permutations

increasesgreatly. In fact, eachmodule would needknowledgeof n mediatypeswhere

n is the total number of media typesthat canbe representedby the system.If a new

13Of course,sincethe structure within a module is unde�ned in Meles,a module may itself include
other modulesof a type not de�ned by Meles.For example,the useof modulesby Webenv(x4.8.1) to
support multiple browsers.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 87

media type is addedto the systemeachMedia module would needto be updated,or

a new Media module addedfor eachpossiblenew combination. In short, the number

of permutations is n2 and the effect of adding a new media type adds(n + 1)2 � n2

permutations.

Secondly, it must be considered how the Nodeclasscanrepresentall of thesepos-

sibilities. A data-typewhich is fundamentally altered eachtime a new media type is

added to the systemis not practical since the modules which work with the type

would alsoneedto be updated.

The solution to theseissuesis to �rstly removethe requirement for the Nodetype

to dir ectlycapture eachmedia-type.Instead the detailedcapture is performed by one

of a number of specialiseddata-types,all of which share a common root. In object-

orientated terminology it would be said that the specialisedtypesall inherit from a

common root, the Nodeclass,which may itself evenbe abstract.In implementation

terms, dif ferent approachesmay achievethe sameeffect. For example,in Goate the

node data-type(x4.3.4.2) usesa union to hold multiple possibilitiesof sub-class.

Eachspecialisednode-type modelsa single media-type.As part of this modelling

the type must allow the inclusion of other nodes. That is, the specialisedtype does

not have to be able to store the contents of other media types aspart of its native

structure, asthis would lead to the problemsdescribedabove,but it must be able to

contain Nodeobjectsat arbitrary points.

The next stagein improving abstractionis to examinethe processof replacement

itself. The stagesof replacementcanbe broken down into:

1. The object span is processedto produce a node data-type holding only the

selectedregion.

2. The subject spanis processedand the end-points within the subject node are

identi�ed.

3. The subjectspanis removedfrom its containing node.

4. The object spanis inserted into the subject's containing node at the position

the spanusedto occupy.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 88

Rememberthe aim of the processis to model replacementin suchawaythat it can

be carried out by one or more Media modules,where eachmodule only needsto be

able to understanda single specialiseddata-type.Consider the exampleabovewhere

a sectionof text is replacedby a region of an image,i.e. the text sectionis the subject

and the imageregion is the object.

The �rst stageof the processneedsto generatea Nodedata-typewhich contains

the region of the image. This operation is carried out by the select() method of a

Media module which specialisesin the processingof imagenodes.The resultant type

would be of the Node`family' but would contain specialistdatacapturing the image.

The remainingstagesof the processwould becarried out by the join() method of

a Media module specialisingin text processing,sincethe module needsto understand

the specialisttext-node data-type.However, note that the module doesnot need to

understand anything about the included type since objects with inherit from type

Node.

The Broker will supply a handler function which determines which Media mod-

ulescanperform a requestedoperation, similar to the handler for Transport modules

(x3.6.6). The handlerwould receivethe requestandreturn the resultwithout the call-

ing function knowing which particular module satis�ed the request.Aswith Transport

modules,Media modulesmust supplyacanHandle() function which returnswhether

they canhandlea particular. Again, note that the canHandle() function is a concept,

not a speci�cation, and there are other waysof achievingthe sameeffect which are

equally valid. For example, in a particular systemthe Media modules may declare

their full rangeof abilities which are then stored by the handler, removing the need

for repeatedcanHandle() calls.

The node produced by a join() operator may be considered a `virtual node'.

This term re�ects the fact the node produced doesnot model an actual node which

existsin a Content store. Therefore, a virtual node cannot be retrieved purely with

an addressbut only asa combination of addressand link speci�cation(s). A virtual

node is considered to be volatile, i.e. not stored, although in practicea systemmay

cachefrequently requestedvirtual nodesto avoid repeatedcomputationally expensive

generation of the node structure. Note that virtual nodesusethe samedata-typeas

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 89

non-vir tual nodesand therefore the content of apanecanbe representedwith asingle

Nodeobject.

The structureof the replacementprocessdetailedaboveisprovidedby the realiser()

(x3.6.12) method.

3.6.10.2 Merge

The merge() operation �attens nestednode structuresof the sametype. For example,

if a nodeText object contains another nodeText object, merge() would removethe

nestingand incorporate the contentsof the inner object directly into the structure of

the outer object.

An exampleof merge() in useis provided in the following section.

3.6.10.3 Conversion

Another role of Media modules is the conversionof media typesfrom one format to

another. This operation dif fers from select() and join() asit requiresthe knowl-

edge of two media types. It is expectedthat within a systemthere may be Media

modules which do not support convert() at all, and others which only support

convert() .

The ability to convert betweenmediatypesis suppliedasaserviceto Environment

modules which interfacewith a client. The result of various linking operationsmay

createa Nodeobject which cannot be presentedby the client. An exampleof a hard-

to-presentstructure would include avideo clip containedwithin an image.In this case

a convert() operation maybe usedto turn the video into an image.The two images

could then be converted into one using an appropriate merge() operation, resulting

in a presentablestructure.

The convert() method isconsidered to be lossy. The exampleaboveof converting

a video clip to an imagewould clearly losesomeinformation in the video. Secondly,

convert() operationsare not necessarilyreversible,e.g. If text is converted to an im-

age,and then converted backagainthe �nal resultmaynot equalthe original. Section

x3.6.11.3 discusseshow the convert() method is usedby Environment modules.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 90

3.6.11 Environment

The Environment constituent relatesto the interfacing betweenthe hypermedia sys-

tem and the reader'sclient. A client in this caseis a software application which is

capableof viewing hypermediacontent. The work presentedthroughout this chapter

on hypermedia implementation hasworked on the basisthat the platform for hyper-

mediaimplementation doesnot needto understandcomplexhypermediabehaviours.

This implementation platform is the client, and associatedprotocols, with which the

useraccessesthe system.

The High/low model (x3.3) describedhow high-level behaviourscan be con-

verted into low-level behaviours.In this model the high-level behaviourswere limited

to a setof traversalbasedbehaviours,and the low-level abilitiesrequired of the imple-

mentation platform included the ability to perform traversal.

3.6.11.1 New low-levelrequirements

Meles includes document formation and considersa greater range of high-level be-

haviours (x3.6.1). However, the low-level requirement is lessdemanding than pre-

viously since the implementation of linking effects is captured within the processes

describedby the model. Therefore, the implementation environment needsonly to

be able to displaygeneratedcontent from the systemand declare/r espondto declar-

ativeevents.

As an example, the client is passedthe text “How now brown cow?” which is

displayed.Furthermore a trigger is placedover the word `brown'. This trigger is ac-

tivated by the user and the client sendsthis event to the systemvia the connecting

Environment module. The system,againvia the Environment module, respondswith

the text “How now blue cow?”.

The semanticsof this link were: “For every instanceof the word `brown', declare

a trigger over the word and replacewith the word `blue' on activation.” The system,

however, wasnot aware of the high-level semanticsand equally the semanticscould

havebeen “For eachcolour mentioned declare a link over the word which replaces

the word with a random colour.”

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 91

3.6.11.2 Client inter facing

Like other modules, an Environment module is dynamically loaded into the hyper-

mediasystemand interfaceswith the Broker using a declared API. The module then

interfaceswith clients of a particular type. In most casesthe client itself should not

be implemented asan Environment module, as this would require the client to be

activatedwhen the systemis initialised, and to stayactiveaslong asthe systemdoes.

Secondly, the client would only be availableon the samemachineasthe hypermedia

system.

A better solution allowing distributed working is for the client and Environment

module to communicate over a de�ned network protocol. From the point of view

of the model this connection is proprietary to the Environment module, although in

practiceit maymakeuseof standard protocols. For example,Goate (x4.4) makesuse

of HTTP asa communicationsprotocol in order to utilise existing client applications

in the form of WWW browsers.

An Environment module is responsiblefor receivingrequestsfrom a client for a

particular addressandpassingthe requestto the Broker. The requestwill be processed

by the realiser() method and the resultingnode structure returned to the Environ-

ment module along with the list of triggers to declare. This communication is not

formalisedin this thesis,but seesectionx3.2.4 for relatedwork.

3.6.11.3 Final nodeformat

It is the responsibilityof the Environment module to transform the returned datainto

a format suitable for the client it is interfacing with. An Environment module must

be capableof processingat leastone specialisednode data-typeobject in order for the

module to translatethat type to a form understood by the client. In the casewhere

an Environment module encountersa node type which it cannot processor which

is not suitable for the client it is interfacing with, the module may make useof the

convert() method availablein Media modules.

As with other casesof a module making use of the facilities of other modules

(x3.6.6, x3.6.10.1) the Environment module would usea handler in the Broker to

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 92

accessthe appropriate Media module. In this casethe requestmay makeuseof mul-

tiple modules.For example,an Environment module mayonly be ableto handletext

and imagesbut encountersan animation type node. The requestto the Broker would

list text and imageasthe only acceptabletypesand the handler would attempt to sat-

isfy this request.In this examplethere maybe no Media module capableof converting

an animation to an image,but there is a transformation from animation datato video

dataand a transformation from video datato imagedata.In this situation the handler

would makeuseof multiple conversionsto reachthe desired format.

In a particular systemimplementation the Broker may decide which collection

of convert() methods to use,basednot on the shortest `path' but on a combined

weighting for the conversion.Asmentioned in sectionx3.6.10.3 a conversionmaybe

`lossy', meaning the result doesn't preserve the semanticsof the original. It may be

possibleto assignto assignaweighting valuefor eachconversionbasedon how `dam-

aging' to the semanticsthe conversionis. The path with the lowestdamageweighting

would be the one chosen.For example,in somecasesit may be desirableto convert

the format asa ! b ! c rather than a ! c directly.

3.6.11.4 Trigger integration

The result of a requestto the Broker will be a node containing the content to display,

and a collection of triggers which apply to this node. The client must integrate these

triggers with the view it displays.The role of the Environment module in this process

is to convert the triggers into a form the client canunderstand.

The strategiesfor dealing with these issuesvariesdepending on the client and

requirements. For example, if an Environment module encounters a trigger event

type which it doesnot recognise,how should the trigger be handled?Presumingthe

trigger type makesuseof the Spanmember(x2.7.4.1) it should be possibleto convert

the trigger to a known type suchasclick . But this maynot be a sensiblething to do

in all cases.Ultimately this is a decisionfor the author of the Environment module.

The situation may arisewhere the trigger type is known to the module, but the

module knows that the type does not exist for this client. This caseis simpler to

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 93

handlesincethe module author canmakeinformed judgementsabout how to handle

the trigger type.

In the caseof the Webenv(x4.8.1) environment for Goate, the client hasa limited

rangeof eventswhich canbe declared. Fundamentallythe browsermust be persuaded

to send a HTTP request to the Environment module when the event is activated.

click eventstake the form of <a href> tags,hover eventscanbe implementedwith

JavaScript,ascantimeout events.Equally, a timeout on apagecould be implemented

using the <meta refresh> tag in the <head>sectionof the page.

Webenvalsohandlesthe casesof overlappingtriggersand ensuresthat the HTML

which is sent to the client will be understood. In the caseof Webenv this involves

detecting exactlywhich client is connectedand customisingthe output accordingly.

As canbe seenfrom this example,evenwith a fairly simplede�nition of low-level

linking there isstill greatscopefor moving the `intelligence' of aclient approacheither

towards the client or towards the Environment module.

3.6.11.5 Openhypermedia

Open Hypermedia (x2.9) behavioursof interfacing with arbitrary applications can

be achievedby using an Environment module. As an example,consider a method

by which hypermedia content could be interfacedwith a word processoror similar

`of�ce' application.

This may be achievedby writing a plug-in for the word processorusing whatever

programming features are availablein the application. This plug-in would interface

with a Environment module on the systemvia an proprietary or standard protocol

(x3.2.4).

Note that unlike other approachessuch as Microcosm [35] which retrieve link

de�nitions and applytheselinks to the contentsof the application, this method would

include nodesin the application and thesenodesmay feature links. SinceMeles uses

links to createdocuments, it doesn't makesenseto supply the link de�nitions alone

to a 3rd party application, sincethis application may not haveaccessto the nodes.If

accessto the nodeswasalsosuppliedviathe Environment module then the application

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 94

would end up re-implementing the Broker.

3.6.12 Realiser

3.6.12.1 Overview

Note that Meles is a model, not a speci�cation, and �ne details regarding process

�ow and executionof an implemented systemare not stated14. However, the general

conceptsof how a systemwill handlerequestsand form documentscanbe discussed,

astheserelate to the structure of the model. This section describesthe realiser()

method within the Broker which providesstructure to the processof document for-

mation.

Note that in various areasof this generalisedprogram �ow it is possiblefor an

systemimplementor to make optimisations to this processwhilst still adhering to

the overriding principlesof the model. Optimisations are discussedfurther in section

x4.9.2.

As previouslydiscussed,interaction with the user'sclient is done via an Environ-

ment module. The Environment module will receivefrom the client detailsof either

a new document to retrieve, or of which trigger in the view wasactivated.The ex-

act form of this communication is proprietary to the Environment module and client

concerned. Someconsiderationsare discussedin sectionx3.6.12.3.

The Environment module sendsthe request to the realiser() method in the

Broker to be serviced,and receivesin return a Nodeobject and a list of triggers to be

declared. The triggers are supplied in a format which groups a Trigger object with

a unique identi�er . The Environment module will reconcile thesetriggers with the

Nodeobject asappropriate for the client.

The requestsent to Realiser() by the Environment module consistsof a Span

object and aRCPobject. The RCPclasscapturesthe conceptof RealisationControl Pa-

rameters(RCPs) and de�nes a setof datawhich affectshow the realiser() method

behaves.Examplesof how the RCPclassis usedare discussedin the following section.

14As opposedto a speci�cation which would capture thesefactors.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 95

From the point of view of the Environment modulesthe realiser() method is a

`blackbox', the workings of which do not needto be understood.

3.6.12.2 Processingstages

In this section the stagesof processingperformed by the realiser() method are

steppedthrough. In order to simplify the description, error handling presentat each

stageis omitted. Error handling in the method is discussedin sectionx3.6.12.6.

The stagesof processingare asfollows:

1. The realiser() method receivesthe Spanand RCPobjects.

2. The node referencedby the node location within the spanis retrieved.As pre-

viouslymentioned (x3.6.6) the Broker providesa handler method which allows

a query to be sent to the collection of Transport modules.This handler is used

by the realiserto retrievethe node.

3. The Spanobject may specifythat the entire node is not required, and only a

subsetof the node should be returned. To trim the raw node datadown to size,

the realiserusesthe media handler (x3.6.10.1) in the Broker. The handler will

call the select() method of the appropriate Media module.

4. The combination of the potentially trimmed node and the RCPsforms a `con-

text'. This context ispassedto eachof the Languagemodulesin the system.The

statement is essentially:“Given this context, what links should be declared?”.

Each Languagemodule will return zero or more links in the common format

describedin sectionx3.6.13.

5. Someof the links returned may need to be activated.This may be becausethe

trigger wassetto instant or becausethe trigger hadbeenactivatedin the client.

The client will havepassedin, aspart of the RCPobject, a list of triggers which

havebeenactivated.

6. For eachactivatedlink, the object part of the link is retrieved.This is done by

the realisercalling itself recursively. The spanpassedto the realiseris the object

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 96

span.Regarding the RCP part, somedatawill be verbatim copiesof that passed

in (suchasthe list of triggers to activate)and somewill be modi�ed (suchasthe

depth control parameterdescribedin sectionx3.6.12.5).

7. The object content returned is reconciledwith the existing subject content by

using the Media module handler to perform a join() (x3.6.10.1) operation.

The list of triggers returned by the recursivecall to the realiserare addedto the

list of triggers declared by the current call.

8. Finally, the realiserreturns the Nodeobject and the list of triggers to the calling

method. Sincethis is a recursivemethod, the calling method may be another

instanceof the realiseror the Environment module.

3.6.12.3 Environmentto client inter facing

As previouslydiscussed(x3.6.11) it is the role of Environment modules to provide

an interfacefrom clients to the system.Rememberthat the realiserwill return to the

Environment module a list of triggers to be declared, each one carrying a unique

identi�er . If a trigger is activatedby the client, the unique ID will be included in the

RCPobject passedbackto the realiser.

The Environment module must carry out any necessary translation to convert

the Trigger object into a form recognisedby the attachedclient. This includes the

encodingof the trigger ID within the trigger declaredwithin the client. For example,a

particular client maynumber its declared events.In this casethe Environment module

must translatefrom the trigger ID to a number. When the trigger is activatedand the

event number is sent to the Environment module, the module must translateback

into the trigger ID for sendingto the realiser.

Each Environment module must maintain the necessary `state' information for

eachattachedclient to allow this translation to takeplace.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 97

3.6.12.4 Documentformation with link paths

A client will make an initial requestto the systembasedon a set location such asa

home page,typed location or bookmark. As the user interactswith the hypermedia,

the node suppliedto the client will be dependenton the path of links travelled.

For example,an initial node N is supplied to the client. Along with this node

a number of triggers are supplied including the trigger for link a, which the user

activates.The Environment module will senda requestto the broker for the result

of affecting N with a and return an altered node a new set of triggers. The new set

of triggers may or may not include someor all of the triggers from the original set,

dependingon the linking action carried out by a.

Of the new set, the user activateslink b. The requestsent to the broker is now

for the result of N being affected by a and then b. As the usercontinues to usethe

hypermedia the `link path' will increase.

However in the casewhere there is no requirement to basethe realisationon the

previousnode, i.e. traversal,the link path canbe zero-ed and then only the new base

node needbe returned.

3.6.12.5 Depth

The conceptof `depth' refersto the distancein linking actionsbetweentwo items of

media.Consider threenodesconnectedby linking. a is connectedto b via l1 and b is

connectedto c via l2. The high-level linking actions,e.g. `traversal',chosenfor l1 and

l2 are not important. If a is taken asthe point of referencethen b is at a depth of 1

and c at a depth of 2. If b wasthe referencepoint then c would be at a depth of 1.

In some casesit may be desirableto limit the availability of links over a certain

depth. An exampleuseof this behaviour is where a hypermedia haslinks de�ned so

that wheneverkeywordsaredisplayedadescriptionof eachkeyword is included. These

de�nitions may themselvesfeature keywords which require description. With suchan

approach it is possibleto suffer information overload asthe nestedde�nitions `take

over' the display. In this exampleit would be useful to restrict the nestedde�nitions

to a depth, for example,of 2 levels.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 98

Restrictionson links according to depth can be achievedby the useof the depth

control parameterin the RCPclass.If the limit wasset to 1 and a waspresented,then

b would be availablevia l1. However, from b it would not be possibleto accessc asl2

would not be considered.

Link triggers are considered to existat the depth of their object, not their subject.

In the caseof l2 the trigger existsat depth of 2 rather than 1. This approach makes

sensesincethe alternativewould involve the trigger for l2 being presentedevenwhen

the object c wasnot accessible.

Note that in order for depth limitation to work, the depth restriction parameter

must be decrementedafter eachlinking action. In the casewhere the linking action

is instant and the link is processedinstantly within the realiser, this canbe ensured.

However, for other trigger types such asclick where there is a `break', whilst the

useractivatesthe link it is down to the Environment module to ensure that a suitably

decrementeddepth restriction is passedto the realiserfor the next iteration.

In somecasesit may be desirableto distinguish betweenthesetwo casesso that

one rule on depth limitation appliesfor instant links, e.g. automatically included

content, and another appliesfor content that the userhasconsciouslyelectedto view.

Depth control can be requestedfrom either of two sources.Firstly, the control

parameter in the RCPobject may be set by the calling method. This caseincludes

limitations requestedby the Environment module due to either user preferenceor

preservation of earlier restrictionsaswell asan RCPobject passedin by another iter-

ation of the realiser. Secondly, the system'sLED(x3.6.13) classmay de�ne a depth

memberwhich allowsLanguagesto de�ne links with restrictions.

In the casewhere both the LEDand RCPobjects havea depth limitation set, the

lower valueis used.

3.6.12.6 Error handling

At any of the stagesof the realiseran error may be thrown. There are severalgeneral

categoriesof error:

� System— Non-handleablesystemerror, e.g. memory exhausted

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 99

� Media cannot be processed— Media modules do not exist to carry out the

required join() or select() operation

� Resourcenot available— The spanrequestedcannot be retrieved

A systemdesignershould consider the behaviour when eachclassof error is en-

countered. For exampleif a systemcannot join() two particular items of media, the

systemcould either return the Nodeobject minus the join along with a warning code

or return an error codewithout anyNodeobject.

3.6.13 Link E�ect Descriptors

In SLIPA the IDOclassdescribeda singleone-to-one link. Meles continueswith this

conceptwith the lessvaguelabelof Link Effect Descriptor or LED. Like the IDOclass,

the LEDclasshasthreecore members:Subject,Object and Trigger.

3.6.13.1 Dir ection

Unlike the IDOclassin SLIPA, the LEDclassdoesnot contain a member describing

the direction of the link. This changere�ects the realisationthat from an implemen-

tation point of view the direction of a link is not relevant.That is, the mechanicsof

`replacement',the fundamental linking action modelled, do not changeregardlessof

whether a link is conceptuallyforwards, backwards or directionless.

There may be dif ferencesin presentationbetween the dif ferent direction labels.

For example,the trigger for a forwards link is blue whilst the trigger for a backwards

link isgrey. Thesedif ferencescanbe fully capturedby the Presentation object within

the relevantSpanobjects asdeclared by the relevantLanguagemodule. Simply, the

direction of a link is a high-level considerationand not an implementation one.

However, the designerof a particular systemmay chooseto include a direction

memberwithin the LEDclass.This could be usedto provide adefault setof behaviours

for a LEDobject. For example,in Goate Languagemodulescan declare LED(x4.7.1)

objectswithout having to fully de�ne the presentationof the triggers. By setting the

direction attribute of the LEDobject to one of a setof symbols,the systemcanapply

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 100

a default, system-widepresentationstyle for that type. This allows triggers declared

from a varietyof languagesto havea constanton-screenappearance.

This useof anextramemberwithin the LED�elds isentirelyvalid within the model,

and a systemdesignermayadd arbitrary extra �elds asnecessary to aid systemdesign.

3.6.13.2 Spans

As with SLIPA, Melesusesa Spanclassto describean areawithin a sectionof media.

However, the structure of the classdif fersin order to avoid the problemsdiscussedin

sectionx3.5.8.3.

The SLIPA de�nition initially madesense;de�ne a `point' within the hypermedia

and a `span' is simply the area delimited by many points. The problems with this

de�nition stem from ignoring the fact that a region is sensiblyconstrainedwithin an

area,e.g. a node.

The revisedde�nition of the SpanclasshasasingleNodeloc object which describes

the basenode for the span, i.e. the node in which the spanrefersto an area. This

Nodeloc object may refer either to a node in the hypermedia storagesystemor to a

volatile in-memory Nodeobject. The �rst of thesecasesis usedwhen referring to a

spanaspart of a link de�nition, e.g. “. . . replacewith paragraphx in node y”. The

secondcaseis usedwhen referring to a Nodeobject which is currently being worked

on aspart of the realisationprocess.

Along with the Nodeloc object the Spanclassincludesa Subnodeclasswhich de-

scribesaregion within anode. This Subnodeclasscontainsanumber of Point objects.

The Point classis overloadedso that it can refer to many dif ferent media types.For

example,for a text node eachPoint object would hold a byte-offset whilst for an

imageeachPoint object would hold a co-ordinate pair. The systemmust ensure that

eachPoint object in a Subnodeobject is of the sametype and of an appropriate type

for the node referred to.

The exactnumber of Point objectspresentfor a spanof a particular type will vary

by systemdesign. For example,it is possibleto delimit the corners of a rectangular

sectionof an imageusing two points. However, a more �exible approachis to allow a

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 101

greaternumber of points and capture the areadelimited by them.

One of the original justi�cations for the SLIPA approach to spanswas that in

somecasesit would be necessary to referencepoints in dif ferent nodes.For example,

considera picture with a caption. If this wasto be selectedwith a singlespanthe start

of the spanwould be the top-left corner of the picture and the end of the spanwould

be the end of the caption. From this perspectiveit made senseto attempt to de�ne

a set of rules which governed how spansbehavedin this situation. However, after

abandoningthe SLIPA approachfor the reasonspreviouslydiscussed,it wasnecessary

to �nd an alternativesolution. During the modelling of LED inheritance(x3.6.13.4)

it becameclearthat inheritanceprovided a cleansolution to this issue.

3.6.13.3 Native spans

A spanis `native' when the Subnodeobject refersto anareawithin the node pointed to

by the Nodeloc object. This is the normal way to considerspans,and it is anticipated

that most spanswithin a hypermediawill be native.

Conversely, a `non-native' spanis one where the Subnodeobject refersto an area

not presentin the node referred to by the Nodeloc object. Rather, the areadescribed

by the Subnodeobject is only valid after one or more other links havebeenactivated.

In aMeles-basedsystemlinks canbeassignedto areasof an imagesothat wherever

that imageis presented,usuallyby inclusion, the links will be presentvia the property

of inheritance(x3.6.13.4). In somecasesthis may not be a desirablebehavioursince

the links annotating the imagemay only be useful in a particular context. Instead, it

would be useful to declare links that apply to the image but are de�ned to exist on

the pageproviding the context15. This is the fundamental idea behind a non-native

span;the Nodeloc object points to the pageproviding context yet the Subnodeobject

refersto content linked into the page.

For this method to work there needsto be a way in which a LEDobject canrefer-

15This particular examplecanbe implementedusingHTML andimage-maps.The link-set isdeclared
on the context pageusingthe maptag yet the links areappliedto content linked into the page.However,
HTML is not capableof the default Meles behaviour of having links apply to imagesregardlessof
context.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 102

encea future linked object. This is achievedby the useof a NonnativeID classwhich

containsa referenceto a future-linked node. A systemdesignershould consider the

mechanismby which aLanguagemodule obtainsandmaintainsareferenceto the LED

which links in the future content. A better approach may be to basethe mechanism

on the Locator for the referencedspanso that the non-native spanis appliedwhere a

particular Locator is matched.

In either case,this leavesthe issueof how a Languagemodule initially becomes

aware that a link is availableto be usedasa basisfor a non-native span.There are a

number of possibilities.One is that the userselectedthe referencednode in someway

andusedthis asabasisfor a link, i.e. amethod of specifyinglinks in the environment is

present(x3.6.14.2). Secondly, the argument canbe madethat using non-native spans

to `�ne tune' the behaviour of a link is a high-level behaviour and therefore both

the non-native and context-providing LEDobjects should be declared by the same

Languagemodule.

3.6.13.4 Inheritance

LEDs referencing a node apply whether the node is the entirety or only part of the

pane.For example,a text node snippethasa trigger, trigger, de�ned on it from byte

offsets100 to 105, which happensto cover the word “badger”. Another text node,

page, includessnippet, i.e. anotherLED isde�ned, onewhich for pageincludessnippet.

snippetis included at byte offset50 within page.

Note the following:

� When node pageis presented,trigger trigger is still available.

� The Nodeobject will contain, at byte offset50, the snippetNodeobject.

� When the two objects havebeen merged (x3.6.10.2) the valuesof the trigger

spanwill be adjustedso the spanstill refersto the word “badger”. In this case

the spanwould be betweenbytes150 and 155.

Now assumethat trigger, when activated,causesall of snippetwithin the view to

be replacedwith newcontent. If snippetis the solecontent in the panethen this action

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 103

is one of `traversal'.If pageis the focus of the paneand snippetis only a part of the

pane,then activating trigger will only causethe bytes150–155 to be replacedby new

content, and the action is `replacement'.

This exampleshowswhy the traditional descriptionsof link effect mentioned de-

scribedin section x2.5 are not suf�cient from an implementation point of view, and

the label applied to a linking action is dependenton the context in which the action

takesplace.

A spanapplied to a node alsocapturesany nodesthat havebeen included within

the area describedby the span. This allows us to model the `picture and caption'

exampledescribedin sectionx3.6.13.2. Consider that the caption existsin-line with

the rest of the text in the node. The text node providesstructure to the document

asdiscussedin sectionx2.8.4. In this examplethe caption existsat bytes200–250. If

the imageis inserted at byte offset20016 then the span200–250 will now capture the

imagefollowed by the caption.

3.6.13.5 Pane

The application may declare a Paneclassto be usedin eachof the Subject , Object

and Trigger classes.A Panesimply identi�es one panewithin the view. Whilst a Span

is capableof describing a region within an amount of media, the combination of a

Spanwith a Panecandescribea region on-screen.

Therefore, in a multi-windowing environment the act of replacementis fully de-

scribedby “r eplacespana in panex with spanb in paney”. In many casesx and y

would need to be the sameidenti�er in order for the replacementto `makesense',

howeverthis is not a systemiclimitation.

3.6.14 Summary

The Melesmodel greatly improveson the SLIPA model. In particular:

� Document formation is explictly modelled and tied in with linking actions.

16Systemdesignersshould be careful regarding the �ne placementof insertions. That is, are images
inserted just-before the referencedpoint or just-after?

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 104

� The modelling of implementation of linking is improved by the useof `replace-

ment' asa common behaviour.

� Expandablemedia type handling is explictly considered.

� The co-ordination and interaction betweendif ferent parts of the systemis cap-

tured by the model.

3.6.14.1 Paneoperations

Section x2.5.1 describedthe linking actions of `appear' and `disappear'.It can be

envisagedthat `appear'can be captured in Meles by specifyinga pane which is not

currently described.However, it is not clearhow `disappear'canbe handled.Further-

more,evenif `appear'issupported asmentioned abovethis doesnot allow anycontrol

over the relativesize,shape,position of behaviourof the pane.

Whilst Melesiscompetentat capturing linking behaviourswithin apre-determined

set of panes,it is not weakwith regard to these`paneoperations'. Further develop-

ment of the model should consider how these operations and descriptions can be

incorporated into the model.

3.6.14.2 Editing

One common hypermedia action that is not captured by the Meles model is that of

`editing'. This term coversthe creation of new nodes,editing of new nodes,creation

of new links and editing of existing links.

The Dexter model [49], for example,does allow editing; components are pre-

sentedto the client applicationwhich canthen be written backinto the Storagelayer.

This approachallowsthe editing of not only atomic components(nodes)but alsolink

structures,which therefore canbe createdby the client.

In order to expandMelesto coverthesebehaviours,there are severalissueswhich

must be addressed.Firstly, there must be a method by which clients,via Environment

modules, can commit changesto nodes. Consideration should be given to locking

issues,merging of distributed changesand accesscontrol.

3. M OD EL L I N G H YPERM ED I A I M PL EM EN TATI ON 105

Secondly, a method should be modelled for allowing the speci�cation of links. It

is comparativelysimpleto allow the creation of LEDobjects,howeverthe issueis really

one of how high-level speci�cations can be created. Bear in mind that the model

cannot presumethat any particular Environment, Languageor Source modules are

present.

A generalapproachmay be to provide a mechanismby which Languagemodules

can declare that they can acceptspeci�cations in certain forms, e.g. clicking within

nodes or text speci�cations. This information would be availableto Environment

moduleswhich caninterfacewith their attachedclientsto provide a method by which

userscanspecifylinks in availablelanguages.

Having categorisedgeneralmethods of specifyinglinks, a method could be for-

malisedby which Environment modulescan senddescriptionsof theseeventsto the

chosenLanguagemodule.

Theseideasare currently under further development.

3.7 Conclusion

This chapterhasdescribedthe developmentof implementation modelling throughout

this research, from the initial conceptsof the High/low model through to the rela-

tively completeMelesmodel which describesin detail the operationof the hypermedia

system.From this point it is possibleto build systemsbasedon theseideas.

106

CH APTER 4

GO AT E

Goate [38] is an application developedover the courseof this research and incorpo-

ratesmany of the ideasfrom the previouschapters.Goate is a systemwhich allows

the rapid implementation of linking languagesby separatingthe interpretation of lan-

guagesfrom the implementation of effect. In principle in a rangeof environments is

supported, although this currently only extendsto the WWW. The source code for

Goatecanbe downloadedfrom http://www.codebunny.org/research/goate/ .

The name Goate is not an acronym and has no particular derivation, although

given the ability of the systemto processa rangeof linking languagesit could be said

that Goatecan“eat anything”.

4.1 Development histor y

As a project, Goate hasexisted from an early stageof research, although over time

the scopeand aims of the application have expanded.This section details various

signi�cant revisionsto the application.

Work towards Goate began with the basic ideasbehind the High/low model.

From this point the developmentof Goatehasbeencarried out in parallelwith that of

the models.Working on the application hasprovided a usefulmeansto explore ideas

and highlight issuesfor the practical issuesof hypermedia systemimplementation.

Theseexperiences�lter ed into the developmentof the Nottingham, SLIPA andMeles

models.

4. GOATE 107

Equally, the developmentof the modelshasfed backinto the application.By going

through the processof formulating the modelsit hasbeenpossibleto makethe design

of Goate consistentand the overall architecture hasbeen clari�ed. In short, neither

Goatenor Melescould havebeendevelopedin isolation from the other and the work

presentedin this thesisis a result of the paralleldevelopmentefforts.

4.1.1 Proof of concept

The initial ideafor the project wasto allow XLink behaviourson existingWebbrowsers

by modifying content asit passedthrough a HTTP proxy (x4.4). The basicconcept

of this mode of operation wastestedwith a smallPerl program.

This test program operated asa single connection proxy. The HTML pagesre-

questedwere analysedand for every word which wasn't part of a HTML link, a link

wascreatedto a dictionary Web site with the de�nition for that particular word.

The designof this program wasfundamentally limited, and wasparticularly slow,

not having been written with ef�ciency in mind1. However, the program did prove

that it was possible, by modifying content in transit, to provide higher-level be-

haviours.

4.1.2 Goate1

After the proof of conceptprogram, work beganon Goateitself. Insteadof usingPerl,

asfor the proof of concept,developmentfor Goatebeganand continued in ANSI C.

At this stageGoate ran under OpenBSD only.

At this stagethe focusof the research wasstill very much on implementing XLink

behavioursasdescribedin [62]. The linking actions focusedon were bi-dir ectional

links, multi-headed links and �exible destination speci�cation. [62] only brie�y men-

tioned the possibilitiesof using Goate to implement other linking languages.

Although published at the sametime as[62], the dif ferencein submissiondead-

linesmeant that [61] waswritten later. This dif ferencemeant the scopeof the project

had time to expandslightly and XLink wasno longer the focusof the work, but was

1The processingof an averageWeb pagetook over a minute.

4. GOATE 108

givenasanexampleof a languagethat could be implementedwith suchasystem.This

paper intr oduced `languagemodules' which interpret elementsin a XML formated

document and convert them into a specialelement type signifying a click-to-move

link.

At this stageof developmentthe applicationwasn't capableof processingXLink or

any other higher-level languageand simply analysedexisting HTML links, removed

them from the HTML documents,then re-inserted them. This mayseema zero-sum

gain, but the processallowed a number of improvementsto be made.

Firstly, documentspassingthrough Goateare correctedin termswhich meantthat

documentsoutput from Goatewere often more `correct' than thoseinput 2.

Secondly, Goatewasableto handleoverlappingHTML links/triggers, presenting

the options in a pop-up box. Figure 4.1 showsa rendering of nestedHTML links

in a later version of Goate. In this examplethere is a <a href> speci�ed over the

whole section to http://www.nottingham.ac.uk and a <a href> speci�ed around

the word `Nottingham' to http://www.nottingham.co.uk .

The processof homogenisinglinks is akeyprocessin the support of the emulation

of high-level languages,andthe common form hasbeendiscussedthroughout chapter

3 with the conceptsof CLS (x3.4), IDO (x3.5.4) and LED (x3.6.13). At this stage

of developmentGoatewasusing a data-typenamedDlink , which is mentioned in the

Nottingham model (x3.4).

Development of Goate continued and the application gained the ability to load

Languagemodules which declared links for arbitrary languages.Someexamplelan-

guageswere discussedin [64]. This paper discussedseveralapproachesof link lan-

guagespeci�cation including a SQL-similar semi-naturallanguage,search resultsre-

turned from a search engine and a languagebasedon the semanticsof documents

calledCLING which is discussedin more detail later. The search-engineideabecame

2The corrector ensuresonly that documentsare well-formed, and doesnot attempt to makecor-
rections that preserve common interpretations.For example,<p> tagsshould encloseparagraphs,but
often an opening tag on its own is usedasa `paragraphbreak'. The corrector should, when encoun-
tering a number of unclosed<p> tagsplaceclosing tagsbefore a following opening tag. However, the
current corrector usesa generalcorrection approach of closing un-closedtags just before the closing
tag of the surrounding block. Theseissuesmeanthat the well-formed document output by Goatemay
not give the sameeffect in the browserasthe original non-well-formed one.

4. GOATE 109

FI GU RE 4.1: Nestedtriggers

GGoogle (x4.7.3).

This �rst implementation of Goate had severalissueswhich were addressedby a

major rewrite. Theseissuesfell into two categories:theoretical and practical.

The theoretical limitations centred around the emergent design,which waslargely

in line with SLIPA rather than Meles.The designwasnot wholly in line with SLIPA

sincethe conceptsof Presentationand Action were not separated,both tasksbeing

performed by dynamicallyloadablemoduleshandling dif ferent WWW browsers.

In terms of practical issues,the code wasnot structured in a way which made it

easyto add new modules to the project. Additionally, the code wasnot particularly

portable to non-BSD operating systems.Lastly, lack of structure in some routines

madethe codeprone to memory-leaks.

4.1.3 Goate2

“Goate 2” is a signi�cant re-write of “Goate 1”. Whilst some code sectionswere

adaptedand transferred, the overall structure wasgreatly modi�ed. This version of

Goate is the current one and the restof this chapterrefersto this version.

4. GOATE 110

4.1.3.1 Impr ovedcodestructure

The layout of the source code itself waschangedso that executables,modules and

libraries could be placedat will throughout the directory structure, with the con�g-

uration script for the project being able to identify and handleeachtype accordingly.

The role of automatic con�guration in the project is discussedin depth throughout

sectionx4.2.

A similar approachis usedfor functions suchasthosefor copying memory blocks.

Goate 2 improves the structure of source �les to reduce memory leaks in several

ways.Firstly, excessiveerror checkingwasremovedto reducethe number of execution

branches.In manycasesit is acceptablefor a function to return solelyERRORSUCCESS

for no error, ERRORABORTwhen the operation couldn't be carried out for reasons

suchasthe availabilityof a resourceor when the supplieddata is invalid in someway,

and �nally ERRORFATALfor errors which should stop that instanceof Goate.Errors in

the last category include the inability to allocatefurther memory or the detection of

conditions which shouldn't arise,e.g. `paranoia'checkson the stateof dataat various

points. Theseerror standards makelibrary functions more predictablefrom the point

of view of calling functions, where previously a function may return obscure error

codeswhich then are executedby the default, FATALbranch.

As well asreducing the number of branches,for eachbranch the cleanuproutines

— freeing dynamic memory and calling the freeing routines for data structures —

were speci�ed in a local macro rather than being listed individually. This made it

easierto spot brancheswhere clean-uproutines were not called,sincethe absenceof

the macro is more obvious than the occasionwhere one out of �ve function callswas

missing.

4.1.3.2 Implementationof Meles

Goate 2 has begun to implement the Meles model as previously described.So far

these changeshave involved the moving of existing media processingcode into a

4. GOATE 111

Media module3, the useof dedicatedTransport modules4 and moving of someof the

proxy code into an Environment module.

This transition to Meles is an ongoing processand in many waysGoate is still

not Meles-compliant. There are two principal limitations of the current Goate with

regard to Meles.One is the continued focusof HTTP proxying asthe implementation

environment. The preferred designiseither to havethe Broker poll eachEnvironment

module askingwhether anyrequestsneedto be serviced,or to havethe Environment

modules`interrupt' the Broker with arequest.However, neither approachiscurrently

implementedand therefore the `wait for request' routine to receiverequestsfrom the

browseris embeddeddirectly in the Broker.

The secondprincipal restriction is that replacementasa linking action isnot recog-

nised,and therefore document formation is not possible.Indeed, only click-to-move

traversallinks are implementedand the systemasa whole relieson the document for-

mation capabilitiesof HTML itself. As part of the move to full Melescompliancethe

systemshould recogniseinclusion links within HTML, e.g. images,removethesetags

and re-implement the behavioursusing the standard formation process.

4.2 Development

4.2.1 Automaticcon�guration

A core part of the build processfor Goate is the automatic con�guration script,

configure . This script,written in Perl,providestwo core functions. Firstly, configure

detects information about the operating systemand de�nes constantsand includes

�les asappropriate.This isdescribedin moredetail in sectionx4.2.2. Secondly, configure

generatesappropriate Makefile s according to the structure of the code itself. This is

describedin sectionx4.2.3.

3Thesemodulesare called`Join' modules internally, which re�ects an earlydevelopmentversionof
the Melesmodel.

4The internal term here is `Retrieve'modules,againre�ecting an earlierview.

4. GOATE 112

4.2.2 Platform independence

One of the original principles of Goate was that it should work with a wide-range

of browsers,and this guided development to a proxy-basedsolution asopposedto

client-sidetechnologies(x4.4.3.2).

A major improvement in the developmentprocessfrom Goate 1 to Goate 2 was

a more structured and expandableapproachto portability, making it relativelysimple

to compile Goateon anyUNIX-like platform.

Goateiswritten in C. In order to ensure that the sourcecodewould beusablewith

a wide range of platforms, the project sticks to ANSI conventions. The project was

principally developedunder OpenBSD using the GCC [37] compiler5. The source

code is compiled with --pedantic-ansi switch set to restrict the compiler to strict

ANSI behaviour. These restrictions meant that, for example,macros with variable

number of arguments were not allowed. Although not tested, it is hoped that these

restrictionsmeanthat Goateshould be compilableby compilersother than GCC.

The configure script attempts various approachesto compiling test programs

embeddedin the script. By doing this the required compiler parameters,librariesand

type de�nitions can be detected. Theseplatform-speci�c details are placed in a �le

named platform.h which is not part of the Goate distribution itself, being entirely

dynamicallygeneratedby configure . platform.h is included by base.h, which in

turn is included by every source �le in the project.

4.2.2.1 Typede�nitions

The direct useof primitive data-typesis avoidedasdif ferent platforms havedif fering

de�nitions of sometypes.For example,the type for a 32 bit unsigned integer under

OpenBSD is uint32 t whilst under someLinux distributions it is u int32 t .

The con�guration script detectsthe relevantnaming styleandaddsto platform.h

5Although OpenBSD wasthe principle platform, testing and usewasalsocarried out under Solaris
and Linux. Theseplatforms also used GCC, albeit a dif ferent version to OpenBSD. The dif ference
in versionsproved to be useful. The version of GCC on OpenBSD was2.95.3, Solarisused 2.95.2
and Linux 3.3. The version 3 compiler provided greatly improved warnings in certain situations, for
example,signed/unsigned comparisons.

4. GOATE 113

a number of #define lines, eachone declaring a type. The symbolsUINT8, UINT16

and UINT32refer to 8, 16 and 32 bit respectivelyunsignedintegersand INT8, INT16

and INT32 de�ne signed integers.Thesesymbolsare usedwithin Goate rather than

platform-native types.configure alsode�nes a suitabletype for BOOL.

4.2.2.2 Function de�nitions

As well asde�ning symbolsthat representdata-types,configure alsode�nes symbols

for common functions. For example,someplatforms support the function bcopy()

to copy blocks of memory whilst other only havememcpy(). In this caseconfigure

detectswhich is availableand assignsthe function to the macro COPY()6. The con�g-

uration script also detectsthe libraries required for certain functions. In the caseof

bcopy() , on someplatforms this is de�ned in string.h and in othersstrings.h .

Other macros de�ned in this way include ZERO()to blank an areaof memory, as

well asFNCTL()which masksdif ferencesin systemfnctl() functions and SETPGRP()

which setsthe processgroup.

A secondpart to the function con�guration is to include extracode into the build

processfor functions used which are not present on a particular platform. This is

usedto makeasprintf() availableto systemssuchasSolaris,asdescribedin section

x4.3.3.1.

4.2.3 Code dependencies

The Goateproject includesanumber of libraries,somefor project-wide useand some

for usesolelyby parts of the system.In eachcaseif a library hasbeenchangedthe code

which dependson it should alsobe regeneratedin order for the program to function

properly. For example,aspart of compilation the offsetswithin data structuresof a

member variableare calculatedand usedexplictly, e.g. member variablex is present

at offset 20 within structure y. If the structure of y is altered in terms of members,

6In this particular casethe two sourcefunctions, memcpy()andbcopy() , arenot completelyequiva-
lent sincememcpy()generallycannot handlecopying to anoverlappingsection.Therefore, Goatemust
treatCOPY()asthe more restrictivememcpy().

4. GOATE 114

ordering or typesthen x may no longer be at offset20, and attempts to retrievedata

at the basememory location of an object plus 20 byteswill retrieveincorrect data.

Equally, it is inef�cient to rebuild the entireproject for every change.Although the

compilation time for the entireproject isnot massive7 it doesintr oduceanunnecessary

delay, especiallywhen development requires frequent recompiles to test or debug

code.

The build processof Goate is controlled using Make�les. A Make�le is a plain-

text �le which containsa number of instructions for processingby the tool make. A

Make�le consistsof a number of directives,eachone consistingof a label, an optional

list of dependenciesand a number of commandsto execute.The label describesthe

result of this command, the dependenciescanbe �le-names or labels.For example,a

Make�le directiveto build the program `myprog' 8 build may look like:

myprog: myprog.h myprog.c
gcc -o myprog myprog.c

If either myprog.h or myproc.c changes9 calling makewill rebuild myprog. How-

ever, if neither �le haschangedthan repeatedcallsof makewill not rebuild the pro-

gram.

Dependencieson libraries can be expressedin a similar way. In the following ex-

amplea library called`mylib' is built and usedby `myprog':

mylib.o: mylib.c mylib.h
gcc -c -o mylib.o mylib.c

myprog: myprog.h myprog.c mylib.o
gcc -lmylib -o myprog myprog.c

Make�les typically include the directives̀ clean'to removeanyobject �les andreset

7Approximately 20 secondson an Intel P3-667 under OpenBSD 3.5.
8Note that the format of Make�les make them suitable for non-programming tasks.This thesisis

typesetin LATEX and the build-processinvolving, multiple callsto latex aswell ascalling bibtex where
appropriate, is describedusing a Make�le.

9Determined by checking to seeif the last modi�ed data on the output myprog �le is older than
that for either myprog.c or myprog.h.

4. GOATE 115

the build process,and `install' to install to result of the build process.

In order for the build processof Goate to be as`accurate'aspossiblein terms of

building neither too little nor too much, the Make�les which describethe build pro-

cessmust contain a list of accuratedependencies.Early efforts to maintain theselists

accuratelyproved to be error-prone, and so configure wasadaptedto automatically

generateall of the Make�les for the project.

configure scanseachsource �le in the project and examinesthe #include lines

to determine which �les dependon which, for this information dependenciescan be

constructed. In somecases�les include header�les which are not associatedwith a

particular library suchasplatform.h mentioned above.In thesecasesthe header�les

themselvesare addedto the dependencylist for aparticular �le. The configure script

can handle transitive casesso if a.h includesb.h , and b.h includesc.h then any �le

that dependson a.h will alsodependon c.h .

4.2.4 Code structure

The source code for Goate is arranged in a number of directories.Each directory is

of a certain `type' which determines how the source within it is built. The type of a

directory determinesthe instructions usedfor the Make�le. For example,librariesare

compiled and linked but do not form an executableprogram, therefore the compi-

lation commandswill dif fer for librariescompared to other types.The threetypesof

directory are `binary', `lib' (library) and `module'.

The default type of a directory is `binary'; other types are set by placing a �le

named .type in the directory which contains the type. Binary directoriesnominally

contain code to be built into an executable,the nameof which is set in a �le named

.bin . Dir ectoriescontaining no codeare valid and are usedto provide structure. For

example,the root of the Goate directory structure containsno source code itself but

containsdirectorieswhich do contain source.

Lib-type directories contain source code which are compiled into dynamically

linkable libraries used by other parts of the project. The name given to libraries is

basedon the relative (to the project root) directory pre�xed with gt , with the un-

4. GOATE 116

derscore characterdividing �elds. For example,if the source is placedin a directory

at root /media/image the library namewould be gt media image. The �le name is

the library namedsuf�xed with .so and the version.The versionof the library is held

in a �le named.ver within the library directory. A full library namewould therefore

resemble:gt media image.so.0.1 . In addition to the version-speci�c�le, a symbolic

link is madeto a �le namedwithout the versionname.Having both allows3rd-party

programsto link to a speci�c versionof the library or the latestversion.

The �nal type of directory is `module'. Module-type directories de�ne source

which should be built into a dynamically loadablemodule. The name of the direc-

tor y is taken as the module name and the name of the previousdirectory is taken

as the classof the module. For example,the directory structure might include the

paths root /animal/camel and root /animal/badger where camel and badger are

module-typedirectories.Basedon this directory structureconfigure knowsthat both

camel and badger are modules of type `animal' and when installing the modules to

their �nal locationsboth modules,which are compiled to single �les, will be installed

in a directory namedanimal .

In addition to the directory types discussedabovea �le named .ignore can be

placedin a directory which instructs configure to ignore the directory and anysub-

directories. This is used, for example, for lib-type directories where some headers

should not be installed. In this casethe headerswould be placedin a sub-directory

named,typically, private 10 and a .ignore �le would be placedin private . .ignore

�les are alsoplacedin directorieswhich contain skeletoncon�guration �les, although

configure separatelydiscoversdirectories named etc and adds to the appropriate

Make�le instructions to install these�les unlessthe �les alreadyexist.

The current layout of the Goateproject is shown below.

Dir ectory Type
/ Binary
/broker Binary
/broker/etc Ignor e
/core Lib
/core/private Ignor e
/emul Binary

10The sourceof the library would obviously needto include `private/name' rather than just `name'.

4. GOATE 117

/emul/asprintf Library
/env Module class
/env/web Module
/env/web/render Module class
/env/web/render/defren Module
/env/web/render/modern Module
/env/web/render/netscape4 Module
/env/web/webmod Library
/http Library
/http/private Ignor e
/join Module class
/join/defjoin Module
/language Module class
/language/ggoogle Module
/language/ggoogle/etc Ignor e
/language/ghurle Module
/language/ghurle/etc Ignor e
/language/htmllink Module
/retrieve Module class
/retrieve/httpret Module
/retrieve/httpret/etc Ignor e
/scripts Ignor e
/sysmod Library
/utils Binary
/utils/parsefile Binary

Note how directory typescanchangethroughout the depth of the structure. For

example,the module `web' containslibrariesand other modules.

4.2.5 Object orientation

Although Goate is written in C rather than C++11 the principlesof object-orientation

are broadly followed. For each data-structure in the project there is an associated

library of functions for processingthat type.

It is also possible to emulate OO behaviourssuch as abstraction and member

protection. Abstraction is possiblewith a number of approaches.Firstly, the classcan

contain a type which consistsof a union of possibletypesand a member that signi�es

which member of the union is active. This approach is usedby the Node(x4.3.4.2)

class.Alternatively, void * pointers point to arbitrary structures. This approach is

usedin the handling of the XML/HTML routines where functions can processone

of a number of sub-classtypes. Like the union approach, a value is also passedto

11On re�ection, C++ would havebeena preferablechoice.The initial work on Goatewasdone in C
and from there developmentalinertia and investmentin existing codepreventedthe change.

4. GOATE 118

signify which sub-classis being referred to.

Member protection, i.e. private functions and variables,is possibleby declaring

thosememberswithin the .c rather than the .h �les. Whilst it is possiblefor a calling

function to locatethe appropriate memory location by searching the symbol tableand

manually manipulating the values,this is considered to be largely missing the point

ascasualalteration is not possible,and essentiallyin any languagewhich allows free

accessto memory suchapproacheswill alwaysbe available.

Each`class'de�ned in the project supportsanumber of common functions: nameInit

to initialise valuesin the object to their defaults,nameNewwhich is asnameInit but

createsa new object in dynamic memory rather than working on an existing object,

nameClean to freememory usedwithin the object, nameFree which is asnameClean

but deletesthe object itself, nameCopywhich copiesdetails from one object to an-

other and �nally nameNewCopywhich createsa new object and copiesthe detailsfrom

an existing object into it.

Goate usesa number of macros to simplify the creation of `classes'12. This means

that oncenameInit , nameClean andnameCopyhavebeendeclarednameNew, nameFree

and nameNewCopycanbe generatedautomatically.

Additionally the datamembersand functions associatedwith handling linked lists,

a common type within Goate, are supplied using macros. Therefore, functions such

asnameInsertBefore do not need to be re-implemented individually13 or cut-and-

pastedbetween�les. This approach,when intr oduced,greatlyreducederrors in linked-

list handling.

4.3 Goate architectur e

4.3.1 Overview

Figure 4.2 showsthe current stateof the Goate project. As previouslymentioned in

sectionx4.1.3, Goate doesnot currently support multiple environments and contin-

ues to run asa HTTP proxy, a processdescribedin more detail in section x4.4. In

12In the descriptionsof Goate the useof object-orientated terminology is preserved.
13It hasbeensuggestedthat this approachis similar to templatesin C++.

4. GOATE 119

FI GU RE 4.2: Current stateof Goate

sectionsx4.7, x4.5, x4.6 and x4.8 the implementation of particular areasis discussed.

4.3.2 Executionenvironment

Goate runs under UNIX-like operating systemsasa forked process.On startup the

application starts n14 additional copiesof itself. The original processmonitors these

`child' processesand restarts them should one exit prematurely.

Eachchild processwaitsfor arequeston the appropriate incoming network port15.

Sincehaving multiple processeslistening to a single port leadsto the possibility of

raceconditions, the port is protected with a semaphore so only one child canreceive

a requestat a time. When the start of a requestis requested,i.e. an incoming network

connection is made, the child releasesthe lock and servicesthe request.When the

request is completed the child attempts to take possessionof the request lock and

blocks if necessary.

In the caseof retrieving a document, the �rst requestmadeby a browserwill be

14The precisenumber is userde�ned via a con�guration �le.
15Again, this valueis usercon�gurable

4. GOATE 120

for the HTML �le itself. Once this is retrieved the browser will havea list of other

resourcesto load suchasCSSstylesheetsand inline images.With this information the

browser may make multiple simultaneousrequeststo the server/pr oxy. This means

that multiple child processesmaybe servicing asinglepagerequest.There is currently

no limit on the number of child processesthat maybeusedby asingleclient, although

the ability to restrict this is under consideration.

4.3.3 Project libraries

From the list of source �les in section x4.2.4 four project-wide libraries are evident:

`asprintf', `core', `http' and `sysmod'.

4.3.3.1 asprintf

Linux and the BSD family of UNIXs provide a function named asprintf() [1]

which outputs a formatted string into a region of memory. The behaviour is simi-

lar to sprintf() exceptthe function usesmalloc() to allocateexactlythe amount of

memory neededrather than relying on a�xed buffer. The asprintf() function isuse-

ful asit removesthe needto considerin advancethe sizeof the �xed buffer, and then

to ensure that no buffer-over�ows can take place. The function is used extensively

throughout Goate.

Unfor tunately Solaris16 does not include asprintf() aspart of the standard li-

brary and so this must be provided by the project where needed.The emul directory

within the directory structure is reserved for librariesneededfor cross-platform com-

patibility. Currently, the only library under this structure is `asprintf' which provides

asprintf() for platforms which do not supply it. As part of the con�guration pro-

cess,configure detectsthe necessityof the asprintf library and includesit in the build

process.

16And possiblyother UNIX systemsnot tested.

4. GOATE 121

4.3.3.2 core

The library `core' providesfunctions and structureswith associatedlibraries (x4.2.5)

useful throughout the project. For example,the structure/librar y combinations for

data-typessuchasIDO(x4.3.4.3), Node(x4.3.4.2) and Nodeloc (x4.3.4.4) are de�ned

within core.

Other utilities provided include the functions to handle con�guration �les, the

macrosdescribedin sectionx4.2.5 and the consolereporting routinesusedfor debug,

warning and error output.

4.3.3.3 http

`http' providesstructuresand functions relating to handling HTTP transactions.This

library existsat the root level as it is used by the Broker17, the `web' environment

module and the `HTTPr et' retrievemodule.

4.3.3.4 sysmod

`sysmod' relatesto the handling of modules loaded by the Broker. This library is

relevantto all parts of the project sincethe structuresprovided include thoseusedby

modulesto describethemselvesto the broker.

4.3.4 Data-types

This sectiondiscussesa selectionof classesto give an overview of the Goateapproach

to the modelling issuespreviouslydiscussed.For discussionpurposesthis sectioncon-

tinues with the naming styleof the restof the thesisand usesinitial capitalisationfor

`class'names,e.g. NodeSpanasopposedto nodeSpanasit appearsin the code itself.

However, the full capitalisationof classnamed after acronyms/abbreviations previ-

ously used is not preserved as it can lead to confusion with types such as IdoSpan

which would be written IDOSpan.

17Although this will not be true onceGoate is fully Melescompliant.

4. GOATE 122

A common type of member variableis `enum'. This is a shortened form of `enu-

meratedinteger', aprocessby which asequenceof symbolicnameshasan incremental

integer value.For example,a sequenceof symbolsmaybe ROD, JANEand FREDDY. The

compiler would assignthe integers0, 1 and 2 to thesesymbolsrespectively. The sym-

bols canbe usedwith integer typesand form a usefulwayof storing one of a number

of options where the associatedvalueitself is not important.

4.3.4.1 Pointersto objects

For eachclassde�ned there is a type de�ned for a pointer to that object. The nameof

the type is the nameof classwith the `P' suf�x. For example,given a classAnimal, a

pointer to the classwould be of type AnimalP.

4.3.4.2 Node

The Nodeclassdescribesasinglenode. The classcontainsanenum namedtype which

describesthe typeof nodedescribed.Possiblevaluesarecurrently NODETYPEUNKNOWN,

NODETYPEXML, NODETYPEHTML, NODETYPETEXTand NODETYPEIMAGE. The value

NODETYPEUNKNOWNisonly for unrecognisednode-types;the othersall signifyaknown

type18. The precisetype isexpandedupon by populating aMimetypememberwith the

Nodeclass.

The Nodetype containsa member named data of type Nodedata. Nodedata is a

union of the typesusedto describenodes,e.g.XmlDocusedfor both XML andHTML

data and Text usedfor text data. SinceNodedatais a union rather than a struct, the

membersof the union occupyan overlappingareaof memory which is more ef�cient

but doesmeanthat only one of the memberscanbe in use.

4.3.4.3 Ido

The Ido classdescribesa LED object. The namepersistsfrom the time of the SLIPA

model, although the scopehas changed and is still changing as the work towards

18Currently the imagetype is not implemented.

4. GOATE 123

Meles compliancecontinues. The classname hasnot been updated to Led to avoid

large-scalealteration of existing code.

The classhasfour members:subject (IdoSubject), object (IdoObject), trigger

(IdoTrigger) anddirection (enum). The �rst threememberscorrespondto the rel-

evant conceptsof LED whilst the direction attribute provides a clue regarding the

default presentationof the link. If, when the broker is realising links, a Ido object

doesnot havepresentationdetailsset for one aspect,then a setof default attributes -

basedpartially on user-de�ned settings- are applied(x4.7.1).

idoSubject describesthe subject part of the link and contains span (IdoSpan)

and pres (IdoPres).

IdoSpan consists of base (Nodeloc), all (boolean), media (enum), subnode

(IdoSnspan19), locator (IdoLocator). base simply holds the node location at which

this span exists.all , if true, signi�es that the span refers to the entire node. This

is an implementation optimisation to savethe evaluationof the more complex sub-

node part for the common task of referring to an entire node. The data relating to

a sub-nodepart is stored in subnode. Note that IdoSnspan is a union of classesand

therefore aswith Nodeonly one member canbe safelyused.media determineswhich

memberof the union is used.Finally, locator describesthe locator.

IdoSnspan, aspreviouslymentioned, is a union of threeclasses:IdoText , IdoXml

and IdoImage. Each of thesetypesdescribesa spanspeci�c for a data-type.IdoText

consistsof two unsignedintegersrepresentingthe start and end offsetswithin a sec-

tion of text. The end-points for IdoXml consist of an item number20 and an offset

within that item which is only relevant for XmlText types.XmlImagecurrently con-

tains four points describinga rectangle— left, top, right, bottom — although in the

future arbitrary areasmaybe described.

The IdoLocator structure contains information that allows the contents of the

spanto be re-calculatedasdescribedin x3.5.5.1. Goatedoesnot currently support the

19IDO Sub-Node span.
20A XML/HTML document is describedusing a number of XmlItemswhich are structured both in

list andtreecontext. That is, from anyparticular XmlItem it ispossibleto moveforwardsandbackwards
or up and down the tree.Obviously, moving in one context alsoaffectsthe position in another. During
parsingeachXmlItem is assignedan incremental`item number' relating to its position in list context.

4. GOATE 124

re-evaluationof spansand asyet no languagemodulesrequire them. The IdoLocator

classhasthe member of module (ModuleId) and desc (string). In principle, when a

IdoSpan needsto be re-evaluatedthe broker would search its list of loadedLanguage

modulesfor one with a matching ModuleId valueand passdesc to that module. The

format of desc is proprietary to the appropriate languagemodule.

IdoPres capturespresentationinformation andhasthe membersactive (boolean),

backColour (Colour), layoutActive (boolean) and layout (enum). The active �ag

de�nes whether this presentationinformation shouldbeconsideredor not. backColour

contains a colour to shadethe background of the containing object; the Colour

structure itself has an active member, when this is set to false, the colour is not

applied. layout describeshow the parent object appearson screen. For example

IDOLAYOUTPOPUPis used for link triggers where multiple choicesare displayedin

a pop-up box21 and IDOLAYOUTBLOCKdisplaysmultiple triggers within in a two-

dimensionalbox22. Not all layout options apply to all situations. layoutActive �ags

whether the layout �eld should be considered or not.

IdoObject describesthe object part of the link andhasthe membersspan(IdoSpan),

focus (IdoSpan), pres (IdoPres). span and pres are the sameasfor IdoSubject .

focus describesthe area that should be highlighted in the view in situations where

the client application cannot displayall of the desired content within the pane. For

example,the panemayscroll to the start of the areadescribedby focus .

IdoTrigger capturesa trigger describedasa concept in sectionx2.7. Membersof

IdoTrigger are span (IdoSpan), pres (IdoPres), event (IdoEvent), title (string).

span and pres behaveasdescribedpreviously. title is the text usedfor the trigger23.

IdoEvent describesan event which causesthe link to be activated.Currently the

structurehasthe solememberevent (enum). Valuesof event canbeIDOEVENTCLICK,

and aspart of the move towardsMelescompliance,IDOEVENTINSTANTalthough this

latter type is asyet unused.

21This is the default stylefor GGoogle, describedin sectionx4.7.3.
22This is the default stylefor GHURLE, describedin sectionx4.7.4.
23For conformanceto the ideaspreviouslypresentedthis membershould reallybe part of amodi�ed

presentationclass.

4. GOATE 125

4.3.4.4 Nodeloc

Nodeloc describesthe location of a node within the node-space,a HTTP URL, �le

location etc.24 are describedusing the Nodeloc class.As a part of the Spanclassused

in Ido (x4.3.4.3) objects,Nodeloc objectsare usedthroughout Goate.

Nodeloc hasthe membersprotocol (enum), host (string), port (integer), path

(string), file (string), customProto (string) and customDest (string).

The classis specialisedtowards locations in the, broadly, URL form. protocol

is one of NODELOCPROTOHTTP, NODELOCPROTOHTTPS, NODELOCPROTOFTP or

NODELOCPROTOCUSTOM. The �rst three options make use of the host , port , path

and file membersto breakthe addressinto logical chunks.Other protocols suchas

NFS could conceivablybe added.

In the caseof NODELOCPROTOCUSTOMthe �elds customProto and customDestare

used to describethe location. The format of these �elds is considered proprietary

to modules which use this type and a `covenant' between thesemodules must exist

regarding the format.

4.4 Operation asa HTTP proxy

4.4.1 HTTP overview

HTTP (HyperText TransferProtocol) [34] was developedto complement HTML

and is simple protocol for the transfer of �les over a network. The presenceof the

term `Hypertext' in the nameismisleadingasthe protocol hasno greaterbiastowards

Hypertext work than anyother and is a generic�le transferprotocol.

HTTP is a client/ser ver protocol. The client machinesendsa HTTP requestto a

server which respondswith the requesteddocument or an error condition. The �ow

of information is shown in �gur e 4.3.

24Currently Nodeloc is not capableof describing an in-memory addressas required for Meles
(x3.6.13.2).

4. GOATE 126

FI GU RE 4.3: BasicHTTP request

4.4.1.1 Version0.9

The �rst releasedversionof HTTP wasversion0.9 andwasanextremelybasicsystem.

The client senta singleline to the server in the form of “ GETpathname”. The server

respondedwith a line in the form of “ statuscode message”.

The statuscodeisathreedigit value,the �rst digit of which determinesthe general

classof code. For example,series200 codesare successcodes,400 codesrelate to

failure to retrievethe document25 and500 seriescodesrelateto anerror on the server

side such as a CGI script which failed to execute.The accompanyingmessageis a

free-form text messagewhich is provided for human inspection26 and hasno systemic

purpose.

If a �le wassuccessfullocatedit would be sent immediatelyafter the statusline, at

which point the serverwould terminate the connection. EachHTTP 0.9 conversation

coversonly a single request.The need to renegotiatea connection with the server

for eachrequestis a considerableinef�ciency when requestingdocumentsconsistsof

multiple �les suchasa pagewith accompanyingimages.

4.4.1.2 Version1.0

HTTP 1.0 greatly expandedthe abilities of the protocol. In generalterms both the

requestand responseformatswere expandedto include `headers'after the initial lines.

Theseheaderstook the form of “ key: value ”. A blank line representedthe end of

the headersand the start of the `entity', i.e. the databeing sent.Additionally the range

of request commandswere expandedfrom simply GETto include HEAD— retrieve

25404, the code for “document not found”, hasentered the common Web vernacular.
26Presumablydebugging sincethis messageis generallynot displayedto the userby client software.

4. GOATE 127

only the headersand not the entity — and POST— send data to the server. Other

commands in the speci�cation, PUT, DELETE, LINK and UNLINKare not commonly

used.

Note that in HTTP 1.0 both requestsand responsescan contain entity data. In

the caseof a requestthe entity data is that submitted to the server, for examplethe

contentsof a form.

A full analysisof the facilitiesprovided by the addition of headersin HTTP 1.0 is

not required for this discussion.However, the main points are:

� Conditional retrievalsso that an entity is only sent if it haschangedsincethe

client last retrievedit.

� The data type of the entity can be speci�ed asa standard MIME type, freeing

the client from having to guessthe datatype by the �lename.

� Connectionsbetweenthe client and server canbe kept open for multiple trans-

actions.

4.4.1.3 Version1.1

The latestversionof HTTP, 1.1, hasintr oducedincrementalrather than revolutionary

improvementsover 1.0. The systemof `entity tags'27 was intr oduced to make the

detection of new document versionsmore ef�cient than the `last modi�ed' method

usedwith HTTP 1.0. Also, clients were given the ability to requesta subsetof a �le,

rather than the entity which is usedto download assistanceprograms.

4.4.2 Proxying

HTTP proxying refersto relayingHTTP requests/responsesthrough an intermediary

server, rather than having the client and server communicatedirectly with eachother.

Figure 4.4 showsthe information �ow in this case.

27Entity tagsare essentiallychecksums,unique to all copiesof a document on a server.

4. GOATE 128

FI GU RE 4.4: Proxy HTTP request

FI GU RE 4.5: Proxy in use

HTTP proxieshavea number of uses.Firstly, a proxy maybe usedfor an environ-

ment where anumber of computersshare aconnection to a remotenetwork, typically

the Internet, and share accessviaaproxy. Suchanarrangementis shownin �gur e 4.5.

When a �le is requestedfrom the remote network it can be savedby a `caching

proxy' and future requestsfor that �le can be served from the proxy rather than

making a freshconnection to the remote resource. This hasthe bene�t of increased

performancefrom auserpoint of view, sincethe connection to the proxy will, in most

cases,be signi�cantly quicker than the connection to the remote resource. Secondly,

this reducestraf�c acrossthe wide-arealink, which in somecaseswill be metered, and

so using a cachingproxy reducesoperating costs.

Another advantageof proxy use is accesscontrol. Sincein an arrangement such

as�gur e 4.5 only the proxy machineneedsaccessto the external network, a �r ewall

4. GOATE 129

can be con�gur ed to reject outgoing HTTP requests28 from other machinesin the

network. With this limitation in place the proxy server can act in an accesscontrol

manner only allowing accessonly to certain machines,identi�ed by IP address,or

usersidenti�ed with a usernameand password combination. Additionally the logs, of

which proxy tracking siteshavebeen visited and by whom, may be used to enforce

the `allowedcontent' policiesof the organisation.

In somecasesa proxy may run asa servicedirectly on a user'smachine.This may

be done becausethe proxy software has abilities in terms of caching, routing etc.

not suppliedby the client software directly. Often there is no dif ferencein the proxy

software between running asa part of the network infrastructure and running asa

personalsoftware, the dif ferenceis only in the con�guration of the software, i.e. to

allow/disallow connectionsfrom other machines.For example,Privoxy[84] isaproxy

which is often run asa personalservice although it may alsobe run in infrastructure

mode.

4.4.2.1 Support for HTTP proxies

Routing queriesviaaproxy server isnot only supported by the main Internet browsers

— Internet Explorer, Mozilla and its derivativesand Opera — but alsoby relatively

basicbrowserssuch asLynx and Dillo. This widespread support is for two reasons.

Firstly, proxiesare an integral part of many organisations'network infrastructure and

to not support proxying would dramaticallyreducethe usefulnessof a browser. It is

not the casethat proxy support is merely a `niceextra'.

Secondly, support for proxies is simple to implement. Nor mally a HTTP request

for a page is sent directly to the referenced server. To support a proxy server the

only necesssary changeis for the requestto be sent to the proxy server's hostname

regardlessof the �nal destination and for the name of the destination server to be

addedto the HTTP request.

28A �r ewall could either block ports 80 and 81 which are commonly usedfor HTTP traf�c or block
all outgoing connectionsfrom other machines,dependingon the administratorspreference.

4. GOATE 130

4.4.3 Contentalteringproxies

HTTP proxiestraditionally passcontent through unaltered. However there is no rea-

sonwhy this hasto be true, and sucha shift providesa usefulopportunity for extend-

ing the abilities of a common Web browser [16]. This approach hasbeen taken in

academicwork suchasDLS-proxy [20][33] and Webvise[43] aswell astools suchas

Privoxy [84].

4.4.3.1 Proxyingasan implementationplatform

Section x3.3.3 discussedthe high/low translation requirementsfor traversal-centric

link modelling whilst sectionx3.6.11.1 re-examinedthe requirementsfrom the point

of view of a document-generationsystem.In this sectioncontent-altering proxiesare

evaluatedasan implementation platform againstboth setsof requirements.

Section x3.3.3 stated that HTML could be considered a low-level traversallan-

guageif it were possibleto write into the destination document in order to place<a

href> tags for back-links29 and <a name>tags to identify in-document positions re-

ferred to. Whilst it maybe possibleto allow write-accesson an limited intranet this is

not true for the Internet at large.

The useof a content-altering proxy cansolvethis issue.Although it is not possible

to write to the destination document on the remote server, it is possibleto change

the document asit passesthrough the proxy. This canbe describedaswriting to the

document `in transit' or `at the point of delivery'. From the point of view of the

browser, no distinction is made between writing to the document in transit or on

the server itself, providing all accessesare madethrough the proxy. In fact, writing in

transit is more �exible than writing to the server, asachangeto the servercopywould

be visible to all usersof the server copy, whilst the proxy approachallowscustomised

changesfor eachuser.

Regarding the document generationrequirementsdescribedin x3.6.11.1 there is

a need for a way of sending generatedcontent and event declarationsto the client.

The proxy approach is suitable for the implementation of an interface to a single

29The return part of bi-dir ectional links.

4. GOATE 131

classof client, a WWW browser. Whilst with the traversal-centricapproach the proxy

is altering existing content, i.e. the basic document staysthe samewith extra tags

being added, with this approach the proxy is generating the document itself, based

on de�ned links. The browser is unaware of this dif ference, and from its point-of-

view it is making a requestfor a URL and information is being returned. The URLs

generatedby the proxy would needto encapsulatethe ideaof node locations,and of

which event is being activated.

In the caseof non-click events,other WWW featurescan be used.For example,

adding <meta refresh> tags to the <head>section can create a time-out for the

entire page. Additionally, JavaScriptprovides many options such asdouble-clicking

and hovering.

Asmentioned, Goateisnot yet Meles-compliantandremainstraversal-centric.The

modelling of proxying usedis the �rst of the two approachesdetailedhere, although

work hasbegun to shift towards the document-generationview.

4.4.3.2 Proxiesversusclient-sidetechnologies

Insteadof using a proxy to alter content receivedby a browser, the sameeffect could

be achievedby the use of client-side technologies such as Java,Flash or browser-

speci�c plug-ins such as XUL for Mozilla and ActiveX on Internet Explorer. The

original arguments in favour of the proxy approach highlighted the fact that client-

sidetechnologiestended to be more restrictivein the availabilityof clients.

For example,although Javais supposedlya `write once, run anywhere' language

there are still platforms,suchasOpenBSD,which do not haveaJavainterpreter. Flash

isalsorestrictedto the moremainstreamplatforms.Furthermore,aspeci�c plug-in for

abrowsermaybe restrictedto aparticular browser/platfor m combination. The proxy

approachallows for the maximum of compatibility by working with HTML which is

common to all WWW browsers.However, evenhere someclient-sidefeaturescanbe

usedto improve the userexperienceif desired (x4.8.1).

With the move towards Meles and a view where userscan connect to the system

with avarietyof clients,HTTP proxying no-longer holdsaprivilegedplace.Indeed, an

4. GOATE 132

Environment module (x3.6.11) could bewritten to provideaJava(or other) interface

to the systemfor suitable clients. However, HTTP proxying is still the preferable

mechanismfor interfacing with a wide-rangeof WWW browsers.

4.4.4 Open access

In [93] ideaswere explored regarding how usersaccessthe proxy. The paperdiscusses

the situation where a useraccessesa `Goateenhanced'pagewithout going through a

Goate proxy. In this casethe userwould seethe pagewithout the extra links added

by Goate.

One suggestionwas that a warning messagecould be included in the original

page.This messagewould be detectedand removedby the Goateproxy and sowould

only be visibleto usersnot usingGoate.However, the usermaynot havethe technical

ability to changetheir proxy settingsor beunableto do sofor reasonsof infrastructure

or accessrights.

An alternative suggestionis to expandthe way in which Goate receivesrequests.

With the normal proxy method the remoteresourceis identi�ed on the �rst line of the

request.The alternativemethod would require Goate to look alsofor requestswhich

seemto be for a Web page on the Goate server, with the arguments on the URL

line identifying the remote resource. Goate would retrieve and processthis remote

resource and return it to the browser asnormal. This meansthat a Goate-modi�ed

pagecould be requestedwith URLs suchas:http://goateproxy/get=www.foo.com

The link <a href> son this pagecould be altered by Goatesothat further requests

for anyresourceare routed through the proxy in the sameway.

The processof initially moving the user to the appropriate URL could be auto-

mated. The Web server hosting the pagecould detect that the requesthasnot come

via a Goate proxy by checking the “Referrer” headerand respondwith a 300-series

HTTP responseto automaticallyre-direct the user'sbrowserto a modi�ed URL.

4. GOATE 133

4.5 Retrieve modules

Retrievemodules handle tasksrelating to the retrieval of data. The role of Retrieve

modules is that of Transport modules in Meles. The dif ferencein terminology exists

asthe concept of Retrievemodules wasintr oduced to Goate before Meles had been

formulated.

The broker in Goate uses a function named retrmodGet() which attempts

to satisfy a request using the available retrieve modules. Each module provides

a function named retrieveCanhandle() which, when passeda Nodeloc object,

will return the enum code SUCCESSif the module can handle the location, and

RETRIEVEERRORNOTSUITABLEotherwise.

If a module respondspositively to the retrieveCanhandle() call the function

retrieveGet() in the module is called to retrievethe data. The requestis passedto

retrieveGet() in a Retrreq object.

The Retrreq (RETRieve REQuest) structure capturesvariousdata relevantto a

requestand is de�ned aspart of the `sysmod' library (x4.3.3.4. As well asthe rele-

vant Nodeloc the structure containsinformation suchaswhether the retrievemodule

should expectfurther requestsfrom this sourceandhow to behaveunder certain error

conditions. Furthermore, the data retrievedfrom the source is passedbackusing the

sameRetrreq object. This is possiblesincethe Retrreq object is passedby pointer

rather than by value.

4.5.1 HTTPret

Currently, only one retrieve module has been written, `HTTPr eq' which retrieves

data from HTTP connections.The module itself is relativelysmall sincethe routines

to handle HTTP connectionsare supplied aspart of the project-wide HTTP library

(x4.3.3.3), leavingHTTPr et to provide a wrapperto thesefunctions.

4. GOATE 134

4.6 Join modules

The Join modules in Goate are a modelling precursor to the Media modules in

Meles (x3.6.10). The original design of Join modules featured a single operation,

joinInc() .

Despite the name of the constituent there is not a join() operation as in the

Media constituent of Meles (x3.6.10.1) sincethis operation is closelyrelated to the

implementation of non-traversallink actions.Although the designof Join moduleshas

been supersededby the modelling in Meles, the original idea wasfor more than the

singleoperation of joinInc() to be intr oducedasthe ideasregarding link modelling

were expanded.

joinInc() isanoperationnot presentin Melesandrepresentsadif ferent approach

to the taskof trigger integration. In Melesthe Environment module is responsiblefor

integrating declared eventswith Nodeobjectsin awaysensiblefor the implementation

platform whilst with this approach the integration is performed by the joinInc()

method within a Join module. The basisfor this approach is that declared eventswill

occupyan amount of spaceon screen,i.e. a visualtrigger.

The joinInc() method takesa list of Ido objects,and for the trigger part of each

Ido object the data structure of the node is altered to include a `marker' within the

structurewhich describeswhere the trigger exists.This markerrequiressupport within

the content data-structure to allow associationof regionsof the describedmediawith

a particular Ido object. For example,in the XmlDocstructure a valid member of the

structurewasXmlLink30 which referred to anIdo object. Once the markersarepresent

for a node object, an Environment module cantranslatethem into activetriggers.

There maystill be further translationrequired to get the structure into a ready-to-

implement form, although this is considered to be platform speci�c and takesplace

outside of the Join module. For example,since HTML <a href> links cannot be

nestednatively, the structure must be analysedand where nestedlinks are detected

the nestingmust be broken into a sequenceof singleor multiple destination links.

The disadvantagesof the joinInc() approachto trigger integration include aclose

30There is no connection betweenXmlLink objectsand the XLink linking speci�cation.

4. GOATE 135

associationwith visual triggers, the `corruption' of the media data-typesand a pre-

sumption of how the triggersshould be integratedwith the implementation platform.

However, the approachdoeshelp restrict coderepetition for environmentswith simi-

lar requirements.Whilst the joinInc() method is not presentin the versionof Meles

aspreviouslydescribed,future work may seekto include a versionof joinInc() , or

perhapsa setof functions providing someof the aspectsof joinInc() .

Although joinInc() is the only method with affectsdata,anotherfunction present

in eachJoin module is joinCanhandle() which takesasits argumentstwo nodesand

an action enum. The function returns if the module can handle this combination of

nodes and action. Valid symbolsfor the action enum are JOINMODACTIONWHOLE31,

JOINMODACTIONPART, JOINMODACTIONJOIN and JOINMODACTIONINC. Note that

no action other than JOINMODACTIONINChasbeenfully de�ned.

4.6.1 Defjoin

Goatecurrently featuresasingleJoin module, Defjoin. Defjoin provesthe joinInc()

operation for HTML or XML nodes.

4.7 Language modules

Language modules in Goate work as describedin Meles. The primary role of the

modules is to declare Ido objects as described in section x4.7.1. As in Meles the

Languagemodulesshouldallow the recalculationof spansbasedon locators,although

this hasnot beenimplemented.

4.7.1 Declaring IDOs

Languagemoduleshavea singlemethod, languageDeclare() , which takesasan ar-

gument a Context object. The Context object containsall of the information needed

by the method to declare Ido objects.Currently, the Context classcontainsa pointer

to the node (NodeP), the location of the node (Nodeloc), a pointer to the list of

31The pre�x is JOINMODrather than JOINasthesesymbolsare de�ned in sysmod/joinmod.h , where
joinmod is a classde�ning the standards for Join modules.

4. GOATE 136

Ido objects that the method will declare objects in (IdoItemListP) and the default

presentationstyles(IdoPres).

The application of default presentation stylesworks in the following way. The

systemhasa setof default presentationstylesfor triggers32, one for the links declared

asbeing forwards links, one for backwards links and one for the multiple destination

triggers. Thesedefaultsinclude the colour to shadetriggers, the presentationstylefor

multiple destinationsetc.

The defaults are the application defaults overridden with settings de�ned in the

Goatecon�guration �les. Although not implemented,individual userpreferencesmay

affect the default presentationstylesaswell.

These presentation defaults are provided as part of the context provided to

languageDeclare() . The languageDeclare() method in a particular module may

or maynot set the presentationstylesfor the Ido objectsit declares.If it does,it may

or maynot basethis speci�cation partly on the defaultsprovided. If the module does

not specifythe presentationstylethe applicationwill set the presentationmembersto

the defaultsat a later stage.This meansthere are effectivelythreepossibilities.Firstly,

the module may set its own standards for presentationregardlessof the defaults33.

Secondly, the module mayset the presentationstylepartly basedon the defaults,e.g.

keeping the colour speci�cationsbut changing the multiple-destination style. Lastly,

the situation where the module doesnot setthe presentationstyleand Goatesetsthe

styleto the defaults.

4.7.2 HTMLlink

The HTMLlink module interpretsembeddedlinks in HTML documentsanddeclares

Ido objectsbasedon them.

The workings of HTMLlink are relativelysimple. The XmlDocreferencedby the

NodePmember of the context is searched, and for eachtag where there is an href

attribute an Ido is added to the list in the context. Note that any34 tag can be in-

32Ultimately there should be defaultsfor subjectand objectsparts aswell.
33It maybe argued that ignoring the defaultscompletely is poor userinterfacedesign.
34With the exception of <area> which is used to de�ne image-maps.Ideally this tag should be

4. GOATE 137

terpreted asa link. The principle for this behaviourcomesfrom the working draft of

XHTML 2.0 [8].

The module treats<a href> tagsdif ferently to other tagswith ahref attribute. <a

href> tagsare considered to havea `purely linking purpose', meaningthat once they

havebeen interpreted they can be removed from the document. Other tags which

happento feature a href attribute are not removed,although the attribute is.

The XmlDocclasswhich modelsXML/HTML documentssupports this behaviour

by allowing the itemsthat makeup adocument to be �agged in two ways.Firstly, each

item canbe shown asbeing a pure linking effect item. When this tag is setGoatewill

removethe item from the document after all Languagemoduleshavebeenconsulted.

Secondly, an item can be shown ashaving been interpreted, which is a hint to other

Languagemodulesnot to declare links basedon the item.

The two �ags are independent.For example,an item maysetasbeing interpreted

but not of being of pure linking effect, e.g. . Alternatively, an item may

be setasbeing of pure linking effect without being interpreted, e.g. a module which

recognisesan embeddedlink but is unable to processit itself.

4.7.3 GGoogle

GGoogle (Goate-Google) is a languagemodule which allowsthe resultsfrom Google

search requeststo be usedaslink destinations.For example,a link could be declared

with the search terms “hypermedia research”; the destinationsfor this link would be

the top n resultsfor that search on Google at the time the pageis displayed.GGoogle

showsthat links to not needto be declared staticallyin a �le but canbe generatedat

time of document delivery.

Link declarationsare embeddedinto the sourcedocument in the form of agoogle

tag with the attribute of query listing the search terms and the optional attribute

results detailing the number of results that should be retrieved. The maximum

valuefor results is10 andthe default is5. An examplelink declarationmaylook like:

<google query="hypermedia research" results="10">Related work</google> .

interpreted and spanson the imagesshould be de�ned.

4. GOATE 138

FI GU RE 4.6: GGoogle in use

Figure 4.6 showsa pageusing Google to generatelinks on the �y . Note that this ex-

amplemakesuseof a nestedspeci�cation. The outermost speci�cation is a <google>

tag specifyingthreeresultson “hypermedia”, the inner speci�cation is a <a href> tag

directly to http://www.sigweb.org . This exampledemonstrateshow speci�cations

from multiple languagescanaffect a common areaof the page.

GGoogle usesthe Google API [39] to interfacewith the Google search engine.

Requestsare sent in SOAP [46], a XML basedlanguage,over HTTP. The data re-

turned by Google includes not only the link but also the title of the page and an

abstract.The title information is usedasthe trigger title.

The implementation of GGoogle is relativelysimpleasthe suppliedGoate HTTP

and XML routinescanbe usedto processthe query. The sourcecodeitself is lessthan

700 lines including white spaceand comments.

4.7.4 GHURLE

The GHURLE Languagemodule [73][7] provideslinks de�ned aspart of the WHURLE

adaptiveWeb learning system.

WHURLE itself is written in XML/XSL T running on Cocoon [22]. Early at-

tempts to implement the linking behavioursof WHURLE directly in XSLT were not

4. GOATE 139

ideal; although it is waspossibleto implement links in this way, the performancewas

an issue.Providing the linking servicesfor WHURLE using a Goate module solved

both the performanceissuesand provided an interesting real-world test for Goate.

4.7.4.1 Link and documentstructure

The basic unit of media in WHURLE is the `chunk'. A chunk is a single unit of

information, but is not a node in the way this thesishasusedthe term sincea chunk

can consistof multiple media types,e.g. a picture and caption. The sizeof a chunk

dependson the information being represented,achunk shouldbethe smallestamount

of information which canstand-alone.In somesituations this may be a paragraphof

text, in othersit maybeanentiredocument sincein somecasessectionsof information

cannot sensiblybe removedfrom their surround context, e.g. legaldocuments.

Chunks are arrangedinto `pages'and pagesare arrangedhierarchicallyasde�ned

by the `lessonplan'. The hierarchical structure of the pagesis usedto form `auton-

avigation' links. Theselinks are createdwithin WHURLE and are not createdor in-

terpreted by GHURLE, indeed asfar asGHURLE is concerned theselinks are plain

HTML <a href> links.

GHURLE isconcernedwith the interpretation of links from the WHURLE linkbases.

The structure of theselinks waspreviouslydescribedin section 2.4 and pictured in

�gur e 2.1. In summary, WHURLE de�nes three kinds of links: single, plural and

hub. Single links exist between two points, plurals consistof multiple points where

eachend-point is accessiblefrom eacheachend-point, i.e. the end-points are fully

connected. With a hub each end-point is accessiblefrom a hub point. All links in

WHURLE are bi-dir ectional.

4.7.4.2 Modelling links

End-points can either be a `mailto' link to sendemail, an `external' link to an exter-

nal WWW page,a pagewithin WHURLE or a chunk. Sincea chunk can appearin

multiple pages,a link to a chunk mayhavemultiple destinations.

The basisfor the GHURLE approach to modelling WHURLE links is that all

4. GOATE 140

links ultimately declare one or more simple traversallinks35, and the processfocuses

on working out the link structure in terms of page-to-pagelinks.

The �rst stageof processingis to read in and interpret the lessonplan in order

to discoverthe structure of the lessonin terms of which chunks appeartogether as

pages,and to calculatethe pagenumber in eachcase.Pagesare identi�ed by apositive

integer which doesnot follow a simpleincrement. Rather the number is basedon the

number of opening tagsor processinginstructions in the lessonplan at the point the

page declaration is seen.For this reasonthe �rst page number in a lessonis often

around 14.

The resultof processingthe lessonplanare two datastructuresnamedPageToChunk

and ChunkToPage. PageToChunkis keyed on page number and contains a list of

chunks for that page.Each chunk hasa unique ID, which is alsousedasthe chunks

�lename. Therefore, if page x is currently being considered GHURLE can deter-

mine which chunks exist on that page. ChunkToPageprovides the reversemapping

of PageToChunk. That is, given a chunk ID it is possibleto determine a list of pages

where that chunk appears.

Thesetwo data-structurestogether allow chunk-to-chunk linking. Firstly the page

currently being considered isextractedfor the Nodeloc object36. Given this pagenum-

ber, a list of chunks on the pageis retrieved from PageToChunk. Next, the linkbases

(x4.7.4.3) are consulted to seewhich chunks thesechunks link to. For eachchunk

linked to, ChunkToPageis usedto form a list of pageslinked to. For eachpagean Ido

object is declared where the Nodeloc describesa URL to the WHURLE server with

the appropriate pagenumber asan attribute.

Page-to-pagelinks are simplerasthere is no requirement to consult PageToChunk

or ChunkToPage. The linkbasescanbe consultedfor destinationpagesfor the current

pageand the appropriate Ido objects declared. Note that although the mechanism

35`mailto' links are a slightly specialcasesincethe destination is not reallya node location. However,
the Nodeloc classis capableof representing mailto links asa custom protocol. For the purposesof
GHURLE mailto links are treatedasa traversallink.

36The pagenumber is used to tell WHURLE which page to display. For example,the URL of a
WHURLE pagemight be http://someserver:8000/whurle?page=22 . GHURLE usesthe Nodeloc
provided aspart of the context suppliedto determine which pagethe useris viewing.

4. GOATE 141

for page-to-pagelinks is well-understood and GHURLE is readyto implement this

link-type, page-to-pagelinks are not currently used in WHURLE aspage-numbers

are considered to be an un-reliableidenti�er .

The simplest link types in terms of implementation are the external and mailto

typesasthesecanbedeclaredasIdo objectswithout eventhe needto reform asuitable

WHURLE server URL.

4.7.4.3 Linkbases

Linkbasesin WHURLE are de�ned in XML and are read by GHURLE `on de-

mand'. Linkbasesare interpreted and stored in a data-structure named Glinkbase .

A Glinkbase consistsof a number of Glink objects.Each Glink object hasa `from'

and `to' part. The `from' part is either a pagenumber or a chunk ID whilst the `to'

part is any valid end-point. For example,a Glink object may capture that chunk x

links to chunk y, or that pagea links to external b.

Each link structure declaration in a linkbase is broken down into a number of

Glink objects.For example,a `simple' link betweenthe chunksx and y would create

two Glink objects, one keyed on x to y and one keyed on y to x. As the entire

linkbaseis processedmore Glink objects are added; in eachcasea check is made to

avoid duplicateentries.

When a linkbaseis queried asdescribedin sectionx4.7.4.2 the Glinkbase object

is simply searched for the appropriate `key', i.e. the page number or chunk ID of

interest.

Linkbasescan be speci�ed in two locations. Firstly, a lessonplan may include a

referenceto a linkbasewhich should be considered for all users.Secondly, the URL

itself mayspecifya linkbaseto usein addition to the one de�ned in a lessonplan using

the links argument. In either casethe linkbaseis processedwhen �rst referenced.

In the secondcaseabove,the linkbasespeci�ed will be interpreted the �rst time

it is referencedand the details preserved for future requests.Note though that the

linkbasewill only be considered for other requestswith a matching links argument.

This facility allowseachuserto havea distinct linkbaseaswell asthe lesson-wideone.

4. GOATE 142

FI GU RE 4.7: A pagefrom WHURLE presentedwithout anyGoateprocessing

4.7.4.4 Presentinglinks

Triggers are positioned at the location of a tag in the HTML which contains the

attribute “class=linkbase”and use the `block' presentation style. Figure 4.7 shows

a WHURLE page without GHURLE enabled, and �gur e 4.8 shows a page with

GHURLE enabled.

4.8 Envir onment modules

The Environment modules representthe system-to-environment interfacedescribed

in Meles (x3.6.11). Goate has traditionally featured a single environment, that of

HTTP proxy. The work on Environment modules is leading to a systemin keeping

with the principlesof Melesthat is not tied to anyparticular implementation environ-

ment.

However this processis very much a work-in-progressand as describedin sec-

4. GOATE 143

FI GU RE 4.8: A pagefrom WHURLE viewedthrough Goate

4. GOATE 144

tion x4.1.3.2 the Broker in Goate still handlesthe receivingof requestsfrom clients

although this should be part of an Environment modules.

4.8.1 Webenv

Webenvis anEnvironment module for interfacingwith WWW browsers.With further

developmentthis module will contain all of the HTTP proxying code. Currently the

module merelyaddstriggers to HTML documents,with the sendingof the document

to the browsercarried out by the Broker.

One of the original aimsof Goate wasto support multiple WWW browsers,and

this is achievedby Webenv tailoring the changesit makesto the HTML document

according to the browserin use.Modern WWW browserssenta `useragent'string as

part of the HTTP requestheaderswhich identi�es the browserand platform in use.

The useragentstring is passedto Webenvwhich is parsedand stored in a Useragent

object. This object is checkedby Webenvagainstknown agentsand one of a number

of dif ferent `renderers' is chosen.

The renderersare implemented asmodules. Each renderer hasa method named

renderCanhandle() which acceptsa Useragent object. This method returns one

of three codes:SUCCESS, RENDERERRORDEFAULTONLYor RENDERERRORNOMATCH.

SUCCESSmeansthat the module recognisesthe useragentand can produce HTML

particularly tailored for this browser. ConverselyRENDERERRORNOMATCHmeansthat

the useragentis not recognisedand this renderer cannot produce HTML for the

browser. The code RENDERERRORDEFAULTONLYis a `partial success'code and states

that although the module cannot supplyHTML particularly tailored for this browser,

it doeshavea `default mode' which will probably be suitablefor this browser. When

Webenvis attempting to �nd a renderer for a given useragent,it will acceptthe �rst

SUCCESSreturning module. If no module returnsSUCCESSthan the �rst module which

provided a default mode will be used.

Once a renderer hasbeenchosen,an entry is madein a list which associatesan un-

parseduseragentstring with a pointer to a renderer module. This list avoidsrepeated

parsingof the useragentstring and querying of modules.

4. GOATE 145

FI GU RE 4.9: Defren and Links

Currently Goate features three renderers. The most useful of these is Modern

which supports Internet Explorer 5 or later, Mozilla 1.0 or later as well as other

browsersbasedon the Mozilla renderer such asFirefox. Thesebrowsersall feature

suitably complete JavaScriptimplementations and CSS.The Modern renderer sup-

ports both pop-up and block rendering stylesfor multiple-destination triggers. Mod-

ern hasbeenusedfor the screenshotsthroughout this section.

The `Netscape4' renderer, as the name suggests,supports Netscapeversion 4

browsers.This module supports the samerange of behavioursasModern although

some minor presentationdetails such asthe borders used for pop-up boxescannot

be duplicated. The implementations of JavaScriptare similar enough between In-

ternet Explorer and Mozilla that the Modern renderer can easilysupport both sets

of browsers;the implementation for Netscapeis suf�ciently dif ferent that a separate

module makessense.

Finally, `Defren' providesonly a default renderer. This renderer makesno attempt

to styletriggers in anywayusingCSS.Additionally, multiple destinationlinks canonly

be presentedby suf�xing secondor later options after the main link. A screenshotof

the pagepreviousshown in �gur e 4.6 rendered in the Links Web browserby Defren

is shown in �gur e 4.9.

4. GOATE 146

4.9 Optimisation

Optimisation of Goate in terms of speedhasnot beena major areaof work, and the

performanceof Goate hasbeenacceptablethroughout. However, someresearch has

beendone on how the the performanceof Goatecould be improved.

4.9.1 Link insertioncaching

In [63] considerationwasgiven to dif ferent waysof cachingdata in systemssuchas

Goate. The normal cachingapproach for a proxy is to cachethe original data verba-

tim, howeverwith a proxy with altersthe content asit passesthrough, a number of

dif ferent approachesbecomeavailable.Note that [63] is a pre-Melesdiscussionand

considersimplementation solely in terms of inserting HTML-type links into existing

documents.

Sectionsof the conclusionfrom [63] are shown below:

“The initial recommendationis that sincede-serialisationis quicker than
parsingand occupiesa comparableamount of space,there is little point in
original pagecaching37.

For systemswhere the stability of links is expectedto be equal(or greater)
to the stability of the document (as would be true for embeddedlinks),
there is alsolittle point in parseddocument caching38. The recommenda-
tion would therefore be to use�attened �nal pagecaching39 only, with a
combination of RAM and discstorage.

If the links are expectedto be lessstablethan the document, (i.e. the links
are applied from some external source), then there are two possibilities:
to cachethe �nal page in �attened form or in structured form enabling
removal of [invalid] links. The choice between thesedependson imple-
mentation factors.

The �attened form is more ef�cient with spacethan the structured form
and so would allow more documents to be cached.The structured form
would also be ef�cient with spaceif using delta storage40 (perhapseven
more ef�cient) but hasthe downsideof the costof applyingthe delta.This

37Original pagecachingis the cachingof the node asretrieved.
38The storing of the document in an alreadyparsedform.
39A serialisedversionof the �nal document with all links added.
40Storing the dif ferencesbetweenstagesof processing.

4. GOATE 147

isvery likely to bemore than the costto retrievea�attened �nal document
from RAM, although againstretrieving the �attened �nal document from
disc, the better performing solution is not intuitive.”

4.9.2 Cachingwith a Melesapproach

As the future of Goate is to move towards Meles-compliancethe ideasdiscussedin

[63] do not dir ectlyapply, although manyof the principlescanbe transferred.

A simple cachingof raw node data is certainly still possibleand would likely lead

to some performance improvements.However [63] argued that a better approach

is to cachethe �nal version of the document assent to the browser or, in the case

of Meles, an arbitrary client. One issueof this approach is that the data sent to the

client may not be a singleNodeobject and the serialisationof the ,potentially nested,

object(s) may vary according to the Environment/client combination. For example,

a particular client may not understandnode type x and so the Environment module

converts it to type y using the convert() method in a Media module. In this casethe

serialised̀ ideal' object would not be relevant.

An alternativemaybeto build up alibrary of parsedandselect() eddata-structures.

Consider a paragraphfrom node i which is requestedvia a link and is inserted at the

top of a document. This document alsofeaturesa number of electivelinks which af-

fect the bottom of the document. Every time the userchoosesone of the electivelinks

the entire document will needto be reformed by the realiserand the paragraphat the

top of the document will need to be retrieved and processedafresh. If instead, the

paragraphcould be retrievedfrom a cachethe processingcostof the realisercould be

greatly reduced.

4.10 Conclusion

A signi�cant sectionof this chapterhasbeendevotedto highlighting shortcomings in

the current versionof Goate in comparisonto the Meles model. However, it would

be incorrect to concludethat Goatehaslittle research value.The two main reasonsfor

this are asfollows. Firstly, Goate hasprovided a usefuldevelopmentenvironment for

4. GOATE 148

ideasgeneratedthroughout this work, and at variouspoints throughout the research

period the applicationhasbeenaheadof the formalisedmodelling. In short, Melesand

the modelling in chapter 2 would not havebeen possiblewithout the development

work on Goate.

Secondly, even the limited set of behaviourssupported by Goate are still use-

ful. Goate is used in production as the linking engine for WHURLE. Additionally,

GGoogle showshow novel linking speci�cationscanbe implementedusing the appli-

cation. With WHURLE and GGoogle there are examplesof languagesusing external

and embeddedlinks.

4.10.1 Further work

The main focus for further work on Goate will involve making Goate truly Meles-

compliant, asdiscussedthroughout this chapter.

Another possibleavenuefor development is a Goate-to-Goate communications

protocol that would allow link speci�cations to be processedby a 3rd party Goate

server. For example,a Goate server encountersand recognisesa link speci�cation41

but cannot interpret this speci�cation, due either to lackof a suitableLanguagemod-

ule or to the server not having accessto a required Source. However, the server may

be able to sendthat query to another Goate server which can processthe speci�ca-

tion and return a set of Ido objects.The issuewhich becomesimmediately apparent

is how a Goate server can recognisea link speci�cation without a Languagemodule,

and discoverother Goate servers.Routing queriesto other instancesof a service is a

technique alreadyusedin the DLS [32][33].

41This is link speci�cation in the widestsenseof the term andmayinclude, for example,wordswithin
text sectionswhich canbe linked to de�nitions or relatedcontent.

149

CH APTER 5

AT O M I C H YPERM ED I A

5.1 Intr oduction

This chapter intr oducesAtomic Hypermedia, a hypermedia approach that doesnot

involve the common concept of nodes. This work originated as a solution to the

problemsof multiple-node spansdiscussedin sectionx3.5.8.3.

One of the issueswith multiple node spansis that the two or more nodesrefer-

enced may not have a connection between them, and so it is indeterminate which

parts of the nodeswould be captured. A possiblesolution, titled `Continuous Hyper-

media' aimed to solvethis problem by ensuringthat there wasalwayssomecommon

attribute between nodes so that comparisonscould alwaysbe made between them.

Theseattributes would takethe form of `dimensions'.The proposalincluded the idea

that all content in the hypermedia would exist assingle `atoms' which were placed

along a number of dimensions.

Although a more pragmaticapproach to multiple node spanswastaken for mod-

elling purposes(x3.6.13.2) the basicideasof Continuous Hypermediaweredeveloped

into an approachto hypermedia that doesnot include the conceptof nodes.

5.1.1 The problemsof node basedhypermedia

The concept of a node is useful since it allows operations to be carried out on a

selectionof media via a single reference.However, suchapproachesend up dividing

content at an arbitrary level of detail. That is, a hypermedia is considered to consist

5. ATOM I C H YPERM ED I A 150

of nodes;anything bigger than a node is a composite,and anything smallerbecomes

subject to within-node operations. As discussedthroughout this work, referencing

inside nodes is itself a signi�cant areaof research and no common way existsfor all

media types.

Consider the following two cases.In the �rst a video is imported into a hyper-

media and becomesa single node. In the seconda collection of imagesis imported

into the hypermedia, eachone becoming a single node. It is possiblefor both ap-

proachesto representthe samedataby applying someproperty of temporal ordering

to the images,so eachimagebecomesone frame in the video. Whilst eachapproach

representsthe sameconcept, the method chosenaffects the way in which userscan

interact/work with the hypermedia.

Furthermore, node-basedhypermedia doesnot lend itself to data which is used

in severalcontexts. For example,an image may contain what is conceptually a dif-

ferent image. It may be desirableto have this subsetof the image accessibleas an

independent`object' eventhough the content itself remainsshared.

5.1.2 Solutionsummary

This chapterintr oduces`Atomic Hypermedia', the resultof research into anapproach

which avoidsthe issuesjust discussed.Atomic Hypermediaisbasedon adatastructure

called Atomic Data Structure which encapsulatesmultiple items of media within a

single,uni�ed structure. A hypermediano longer consistsof a number of nodes,but

of a single Atomic Data Structure. Atomic Data Structure consistsof a number of

atoms.

Atoms are the soleunit of content with the data-structure and representthe small-

estuseful unit of data, a singlecharacter. Other data-typescanbe representedwith a

number of atoms.

A universaladdressingschemeisde�ned basedaround the selectionandmanipula-

tion of atoms.Sinceall content consistsof atoms,with this singleschemeit is possible

to work with anymedia type.

Additionally this removesany arbitrary node-levelboundaries.Sincein the data-

5. ATOM I C H YPERM ED I A 151

structure there is nothing smallerthan an atom, it is not necessary to considerhow to

referenceinsidean atom.

5.2 Atomic Data Structur e

This sectiondescribesthe axiomsof Atomic Data Structure (ADS). In summary, these

are:

� ADS consistsof atoms,eachholding a singlecharacterascontent.

� Eachatom existsin an arbitrary number of dimensions.

� For eachdimension, the atom existsat one or more discrete location.

� No two atomscanexistat the samelocation.

5.2.1 Atoms

An ADS consistsof a number of `atoms'. Each atom holds a single character1 as

content. This is the only content holding datatype in ADS.

Although charactersare the only primitive datatype, other datacanbe represented

using multiple atoms. Some exampletypes are shown in �gur e 5.1. For clarity the

atomsin this �gur e havebeenplacedadjacentlysothat a left-to-right readercaneasily

discern the semanticmeaning.In ADS there is no privilegedview of spatialadjacency,

so the arrangementsshown here are no more natural than any other. The interpreta-

tion of ordering is left to the readerand is basedupon the propertiesexhibited by the

atoms.This topic is discussedin greaterdetail in sectionx5.2.2.

From types like thesemore elaboratemedia can be constructed. For example,a

colour is formed from integers representing RGB values,an image is formed from

colours, a video is formed from images,a �lm is formed from videos, a festival is

formed from �lms.
1It is assumedUnicode, or equivalent, will be used to allow the useof any charactervalid to the

user.

5. ATOM I C H YPERM ED I A 152

FI GU RE 5.1: Atomic representationof common types

Thesetypesare a userinvention; ADS doesnot `understand'anyone of the data-

typesin the previouslist, none of them canbe considered a `basic'or `primitive' data-

type. Sincenone of thesetypesare baseto the structure, none of them are privileged

and there is no extra cost to analysingdata at any level. It is asnatural to selectdata

representinga video asit is to selectthe integersmaking up a colour. It is asnatural

to selectan entire video asit is to selectthe �rst framefrom every �lm in a festival.

5.2.2 Dimensions

The previoussectiondescribedhow the contentsof acollection of atom canrepresent

data. For this to work there must be a mechanismby which the respectivepositions

of atomscanbe de�ned. This is achievedby placing the atomsalong dimensions.

A dimension is an ordering of valuesheld by a common attribute or property.

Objects in the real-world havethe common propertiesof spatialposition, madeup of

three valuesde�ning their position relative to a common origin. They alsohavethe

common property of temporality describing their position relative to a certain time

point. Objects changetheir positions relativelyfreely in the threespatialdimensions,

and move at a constantrate in the dimension of time2.

Atoms in ADS are placedalong dimensions.The dimensionschosenare arbitrary

from the point of view of the structure, but from a user'sperspectivemaybe relevant

to what would traditionally be considered the internal structure of the media, or the

placeof that mediawithin the whole ADS. Sincethe choiceof dimensionsis irrelevant

to the structure perse, a detailed discussionis better suited to section 5.3. However,

a grounding in theseissuesis usefulat this point to aid the understandingof the rest

of this section.
2At least,this is the common perception.

5. ATOM I C H YPERM ED I A 153

It is possibleto anticipate likely choicesfor the dimensionsthat will be assigned

to atomsbasedon their internal structure. For example,text is one dimensional(1D)

asit hasthe property of length only. Although text often existsin a two-dimensional

manner (such ason a computer screen or printed page) this is a presentationof the

data and not a property of the data itself. Throughout this paper x is used as the

identi�er for length, or width.

Imagesare two-dimensional (2D) and havethe properties of width and height, y.

3D models havethe additional property of depth, z. The identi�er used for time is

time. The anticipateddimensionsfor somecommon typesare shown below:

Node type Dimensions
Text x
Image x � y
3D model x � y � z
Video x � y � time
Animated 3D model x � y � z � time
Sound time

Sound is simply time since the waveform representing sound is formed by the

successionof valuesalong the time dimension. It may be considered that a sound

recording is time � channel where channel is a number of channels.For example,for

stereo sound there will be two positions in the channel dimension. The assignment

of properties to dimensionsis discussedfurther in sectionx5.3.

Theseexampleshaveignored the fact that at eachposition in the dimensionsmen-

tioned, the valuewill not be a single character, which is the only atom content type,

but a user-level de�ned data-type such as integer, colour etc. the representationof

which would add to the number of dimensionsinvolved. A complete set3 of dimen-

sionsfor sometypesare shown in a following example.

It is not only acceptable,but an advantageof the approach, to be able to only

discussstructures in terms of relevantdimensionsfor the current context and leave

the `depth' of the structure implicit. For example,avideo could be considered to exist

over time and leaveimplicit that eachposition along that dimensionis an image.With

3In terms of internal structure.

5. ATOM I C H YPERM ED I A 154

FI GU RE 5.2: String with attributes labelled

FI GU RE 5.3: String with attributes labelled

ADS you canwork with the levelof detail that you needand no more.

An atom hasone or more properties4. Eachproperty consistsof two parts. Firstly

there is the nameof the dimension,known asthe dimensional`identity', which serves

asa label.Secondlythere isat leastone valuerepresentingwhere along that dimension

the atom exists,a dimensional `position'. Whilst the following examplesshow single

positions, the effectsof multiple positioning are discussedin sectionx5.2.4.

Identities canconsistof lower-caseletters, numbersand the underscore character.

Identities must start with a lower-caseletter. The position is a positive or negative

integer. If an atom has the identity of x and the position 5 it has the property of

x = 5.

Figure 5.2 showsa simplestring with properties shown. As previouslymentioned

the way theseatomshavebeenarrangedspatiallyin this �gur e is not important, it is

the propertieswhich de�ne the relationshipbetweenatoms.It would be equallyvalid

to presentthe �gur e asshown in 5.3.

Figure 5.4 showsa small(1 � 2 pixel) imagewith propertiesshown.This example

usesthe dimension c to representa position within a RGB colour so that c = 0 is the

red value, c = 1 is the green and c = 2 is the blue. The n dimension is usedalong

the length of an integer number. Note that for eachvaluethere is no �xed number of

atomsalong the dimension, asthis dependson how manyare needed.

Although the spatialarrangement is unimportant to the structure, arranging this

4This is not strictly true, seesectionx5.2.3.

5. ATOM I C H YPERM ED I A 155

FI GU RE 5.4: Image with attributes labelled

�gur easshownmakesit easierto appreciatehow groupsof atomscould beselected.It

canalsobe imagined how a stackof theseatomscould representa video and a group

of atomsselectednot only in two dimensionsbut with depth aswell. Of course,selec-

tions needn't be restrictedby thesethreecommon dimensions,although the mental

visualisationbecomesincreasinglydif �cult asfurther dimensionsare considered.

There are no identities or positionsthat haveanyspecialmeaningwithin the struc-

ture. Theseexampleshaveusedx and y asthey will havea common meaning to the

reader. The structure, however, doesnot apply this meaning. Substituting f rog and

toad for x and y would havenot changedthe behaviour of this ADS. It is up to the

userand application to interpret the semanticmeaningof identities.

The sameis true for the positions. These exampleshave used ascending,zero-

indexed integerswhich makesthe semanticmeaningclearto the reader. It would be

equally valid, from a structural point of view, to store consecutivecharactersat the

position of the square of the conceptualindex, i.e. 1, 4, 9, 16 etc.

Finally, so far the position assignedhashad someresemblanceto the relativepo-

sition of this atom with the data-type.For example,for a string the atom at x = 1

is semanticallyadjacent to the atom at x = 2. This need not be the case,and the

positions assignedcan be chosenfor any purpose.An alternative useof positions is

discussedin sectionx5.3.3.

Properties of atoms can be adjusted freely. Identities can be added or removed

from atomsalreadyin existenceand the positions for an identity canbe altered. One

5. ATOM I C H YPERM ED I A 156

FI GU RE 5.5: Uniquely addressedatoms

FI GU RE 5.6: Non-uniquely addressedatoms

restriction which appliesat all times is that atomsmust be uniquely addressed.

5.2.3 Uniqueaddressing

Eachatom within anADS must haveanunique `address'.The addressis the setof the

atomsproperties.Therefore, for an addressto be unique, no other atom canhavethe

sameidentities and the samepositions for those identities. Uniquenessin either the

setof identities or the setof positionsmakesan addressunique.

The two atomsshown in �gur e 5.5 are uniquely addressedsincethe atom on the

right doesnot havea z dimension.However, the atomsin �gur e 5.6 are not uniquely

addressedsincethere is a clashat y = 0 (x5.2.4).

Note that it is possibleto addressa single atom with the nul l address,that is the

addressconsisting of no properties. However, this is not considered to be useful in

practice.

As data is addedto an ADS the problem of uniquenessis likely to arise.The �rst

imageaddedto the hypermediais likely to beassureduniquenesssinceno other atoms

will haveboth x and y identities, and no others. As the secondimage is addedthere

will be a clash.

The solution to this problem is for the two imagesto be unique in some other

dimension, asdiscussedin sectionx5.3.3.

5. ATOM I C H YPERM ED I A 157

FI GU RE 5.7: Alternative “Hello” representation

5.2.4 Multiple positioning

As previouslymentioned, eachproperty of an atom canhold more than one position.

To phrasethis another way, an atom can exist at more than one location along a

dimension. Figure 5.7 showsan alternative representationof the word “Hello”.

The way to interpret this is to saythat the 3rd atom5 existsboth at position 2

and position 3. Note that the valuesare discrete, so if an identity had the associated

positionsof 1 and 5, the atom would not automaticallyexistat positions2, 3 or 4.

Multiple positioning performs a key function within the datastructure asit allows

two distinct locationsto be `joined'. Sectionx5.3.6 showshow this is usedin Atomic

Hypermedia.

5.2.5 Memory usage

One issuewith the implementation of ADS is the memory usageof the structuregiven

the high proportion of meta-data.This sectionexploresthe memory requirementsfor

a single atom and intr oduces a formula for calculating the worst casescenariofor

memory usageof an ADS structure.

Considerthe likely memory requirementsfor asingleatom. The atom itself is likely

to be representedin Unicode. Let the amount of memory occupiedby the memory

be representedby char size.

Each property of the atom consistsof an identity and one or more values.The

identity consistsof a number of characters.Thesecharactersdo not needto be stored

in Unicode andsoashorter, short char size, representationcanbeused.The average

length of an identi�er is representedwith avg id length. Eachposition will be repre-

sentedasa signedinteger, the length of which will vary by implementation platform.

5This is, of course,the thir d atom in this particular representation,not the thir d item asde�ned by
the structure.

5. ATOM I C H YPERM ED I A 158

This length is representedby int size.

The structure to allow multiple positionsneedsto be considered. A linked list may

be suitable for this purpose which will require a pointer in addition to eachvalue.

The sizeof the pointer will vary by implementation platform; this is representedby

pointer size. The linked list will also require an initial pointer to the �rst structure

position f ir st of sizepointer size. The averagenumber of positions for eachidenti-

�er is representedwith avg num positions.

A linked list will also be neededto capture the list of properties presentfor the

atom. The �rst item in the list is representedby property f ir st. The averagenumber

of properties for an atom is representedwith avg num properties.

The memory requirement for eachatom cantherefore be calculatedwith:

mem property = (avg id length � short char size)+
pointer size+
(avg num positions � (int size+ pointer size))

mem atom = char size+
pointer size+
(avg properties � (mem property + pointer size))

To evaluatehow ef�ciently ADS stores data valuesneed to be assignedto the

symbolspreviously discussed.Some of thesevalues,such asavg num positions are

bestdiscovered from the evaluationof structuresin use.Sinceexperimentalevidence

is not availableon the use of ADS this value along with avg num positions and

avg properties must be estimated.This exampleuseswhat is considered to be high

estimatesfor thesevaluesin order to show the worst caseof ADS ef�cency. It should

be noted that evenafter experimentaldatahasbeencollected it is not expectedthere

will be a consistentset of valuesfor thesesymbols,and thesevalueswill vary greatly

according to the databeing modelled and the architect of the structure.

For the other valuesa32-bit basedarchitecture is assumed,hencefour byte point-

ersand four byte integer values.16-bit Unicode is assumedfor characterstorage.

In summary:

5. ATOM I C H YPERM ED I A 159

Symbol Value
avg id length 6

avg num positions 1.2
avg properties 10

char size 2
int size 4

short char size 1
pointer size 4

Thesevaluesgivevaluesof 19.6 bytesfor mem property and242 bytesfor mem atom.

Given the mediamodelling methodspreviouslydiscussed,a pixel in an imagewill

consistof up to 9 atoms.Presumean averageof 7 atoms.Therefore, the memory re-

quirementsfor a 1600x1200 (a typical high-resolution photograph) would be 3GB.

This valueis clearlyunacceptablefor anypracticalpurposesand soa method of mem-

ory optimisation is needed.

5.2.6 Memory optimisation

The �gur esin the lastsectiondiscussa scenariowhere every detail regarding an atom

is stored explictly and independently. An implementation of Atomic Hypermediacan

makesigni�cant memory usagereductionsby exploiting the fact that a lot of this data

is redundant.

For examplea pieceof text is likely to havethe sameidentities throughout, and

constantpositionsin all but the x dimension.This fact canbe usedto store datamore

ef�ciently within the application. An object type would store two lists. The �rst is a

setof propertieswhich are unchangingthrough the object, this is the sameformula as

for mem property above.The secondlist containsidentities which do changewithin

the object:

mem id changing = changing f ir st+
(num changing ids�
((avg id length � short char size)+
pointer size))

If the example image has four positions that change, and six that do not

mem id changing can be calculatedasbeing 44 bytes. The size of the encapsulat-

5. ATOM I C H YPERM ED I A 160

ing object — ignoring the atomscontained— is therefore:

mem object = mem id changing + pointer size+ (6 � mem property)

Which evaluatesto 165.6 bytes6 given the current assumptions.

The atoms themselvescan be stored asa linked list, with eachobject in the list

being the contentsof the atom and a linked list of values.The total memory usagefor

a group of atomswith this method is therefore:

mem oneatom= char size+
atom next+
pointer size+
(num changing ids � (int size+ pointer size))

mem atoms = mem object+
atom f ir st+
(num atoms � mem oneatom)

For the exampleimagemem oneatomis 42 bytesand mem atoms is 77MB which

is only 2.5%of the original 3GB.

This approach is still far from optimal in that there is predictable data which is

being explictly stored. Namely, the positionswithin an imageincrement in predictable

ways.A better approachwould exploit this fact to reducethe number of positionsthat

haveto be stored.

Note that whateveroptimisation is done to store data within the application, the

ADS should behaveasin the original approachwhere every atom had an independent

set of data. It should not be possibleto tell from a user-level point-of-view if the

data is stored in a compressedform within the applicationor not, and the application

must ensure that storagestructuresencapsulatingsectionsof the ADS aremanipulated

completely transparently to the user.

6The fractional part is a result of the 1.2 averagenumber of positions for an identity. Obviously, in
reality the valuewould be a higher or lower integer value.

5. ATOM I C H YPERM ED I A 161

5.3 Atomic Hyper media

Section x5.2 discussedthe structure and rules for ADS. This section discussesap-

proachesfor using ADS aspart of a hypermediaapproachnamed`Atomic Hyperme-

dia'.

ADS is suf�ciently powerful that only a single new ability needsto be added in

order to facilitate its useasa basisof a hypermedia system.This is the ability to refer

to content by reference,rather than copying content verbatim betweenareasof the

datastructure. This distinction is discussedin more detail in the following sections.

5.3.1 Layout

Atomic Hypermedia allows hypermedia operations without boundariesby working

directly with the properties of content, not an arbitrary container class.To maximise

the bene�ts of the approachit is very important that the `layout' of the hypermediais

clearlyde�ned.

The term `layout' refersto the wayin which content isstructuredwithin the hyper-

media in terms of the identities usedto expressconcepts.The planning of the layout

is the taskof the hypermedia architect. Whilst many authors may contribute content

to a single hypermedia, it is the architect who decideshow that content should be

representedin ADS. For example,the architect mayspecifythat atomsrepresentinga

book should havethe identities of chapter, sentenceand x.

5.3.2 Incorporation

Bringing items of media into an Atomic Hypermedia is known asincorporation. The

hypermedia application will make an interface available,with supporting program-

ming libraries, with which external programscan manipulate the hypermedia. Inter-

facing is discussedfurther in sectionx5.3.7.

An incorporation tool usesthe availableinterfaceto import new media items into

the hypermedia. There may in fact be more than one tool used, as individual tools

mayunderstandonly a limited setof media.Theselimitations maybe to generictypes

5. ATOM I C H YPERM ED I A 162

suchastext or imagesor to particular �le formats.

The tool will createatomsin appropriate dimensions.Firstly, the tool must assign

dimensionsto the internal propertiesof the media,e.g. the pixelsin an imageexisting

in the x and y dimensions.Secondly, there may be a need to specifyother dimen-

sions as the structure of the overall hypermedia demands,e.g. index dimensionsas

discussedin the following section,or other semanticindicators. Work is ongoing re-

garding a speci�cation method by which an architect can in�uence the behaviour of

incorporation tools so asto meet the speci�cation for the hypermedia.

5.3.3 Indices

For any non-trivial hypermedia it is impractical to use an addressingschemebased

purely on the structure of the original media.Equally, whilst extradimensionsmaybe

usedto provide structure betweenatoms, i.e. dimensionswhich did not exist in the

original media, this is alsoinadequate.Considera library of imagesincorporated into

a hypermedia, some of which will be used aspart of a composedvirtual document

within the ADS.

The identities relating to the structure of the document will probably not be as-

signed until the imagesare placed within the document. Until this takesplace ad-

dresseswill only haveidentities relating to structure of the original media,and hence

the addresseswill be non-unique.

A solution is to usean identity which holds a uniquely identifying value.For ex-

ample, for imagesthe identity may be image. The position used with this identity

would increaseby one every time an imageis incorporated. Identities usedin this way

are called`index identities'. Note that index identities behaveidentically asnon-index

identities regarding the rulesof ADS.

Uniquely identifying eachpieceof incorporatedmediamayseemacheat,sincethis

essentiallylabelsa `node' with a `node ID'. However, there are severalreasonswhy

this is not the case.Firstly, Atomic Hypermediadoesnot seekto removethe concept

of semanticgrouping, in fact it seeksto expandthis conceptby allowing groupings to

be applied to arbitrary atoms.Secondly, intr oducing this grouping hasnot raisedany

5. ATOM I C H YPERM ED I A 163

FI GU RE 5.8: Multi-located ID values

barriers to the structure of the `node', a useris still equallycapableof examiningand

working with the content asthey were before.

Consider a hypermedia where incorporated imageshavea image index identity.

Figure 5.8 showsa collection of atoms which havebeen incorporated from an im-

age7. When incorporated the atomswere assignedthe property image = 0. After in-

corporation, a subsetof thoseatomswere selectedand multi-located along the image

dimension and additionally given the the property of image = 1. A single image �le

hasgiven rise to multiple imageswithin the hypermedia.This is an exampleof where

there is not a 1:1 relationship between the original �le and the unique identi�ers

assigned.

In a similar vein atomscould be selectedthat were incorporated from a video and

give them the identity of image. Theseatoms would then, presumably, haveat least

the identities of x, y, time, video and image.

5.3.4 Linking

The ability to link items together separateshypermedia systemsfrom plain data stor-

age.A link is anexpressedrelationshipbetweentwo objects.Generally, anykind of re-

lationship canbe expressedby the link, although an applicationmaylimit the possible

relationships.Suchrelationshipscould include “is parent of ” — genealogyhyperme-

dia — or “mor e detail” — teachinghypermedia.By following theselinks the reader's

view of the hypermediachanges.

7For clarity this ignoresthe fact that eachpixel in the imageis in fact madeup of multiple atoms

5. ATOM I C H YPERM ED I A 164

Atomic Hypermedia supports two varietiesof linking. Firstly, content can be ar-

ranged at positions along dimensions signifying a `more' or `less' relationship. An

exampleincludes arranging content by a level of detail asshown in section x5.3.5.

Secondly, redirection (x5.3.6) canbe usedto join distinct areasof ADS.

5.3.5 Sub-structures

An Atomic Hypermediaconsistsof a singleADS object which storesall data.Within

this ADS object it canbeconsidered that thereexistanumber of sub-structures,where

a sub-structure is an arbitrary selectionof the ADS object. It doesnot matter to the

de�nition whether there is a path betweenthe atoms of the sub-structure8 or if the

sub-structuresare completely disconnected.The term sub-structure is usedonly asa

discussiontool when highlighting that two areasof the ADS object are conceptually

distinct in someway.

If it is assumedthat a sub-structure representssomegrouping of content in the

hypermedia,links canbe representedby placingalternativecontent along new dimen-

sions.

For example,considerthe relationship of “mor e detail” and a sectionof text de-

scribing the HTTP protocol. The sectionof text would haveat leastthe identity of x

but would likely haveother identities placing it within a larger structure. This exam-

ple ignorestheseother identities. To expressthe relationship of “mor e detail” these

atomsare altered so they additionally havethe identity of detail . So, for example,at

(detail = 0) the text would be “HTTP is acommunicationsprotocol.” at (detail = 1)

the text would be “HTTP is a transfer protocol used primarily on the WWW' and

at (detail = 2) the text would be “HTTP , now at version1.1, is a transferprotocol

primarily usedon the WWW although other applicationshavebeenfound.”

Note that at higher valuesof detail other identities could havebeenaddedto the

atoms,suchassection. Within a sub-structure there is no requirement that all atoms

8For there to be a direct path between two atoms, the atoms must havea common identity. An
indirect path requires that an atom can be reachedfrom another atom by following multiple direct
paths,e.g. there maybe no direct path betweena and c but an indirect path mayexistsuchasa ! b !
c.

5. ATOM I C H YPERM ED I A 165

havethe samesetof identities.

There are disadvantagesto using the previousapproachthroughout ahypermedia.

Consideran imagewhere eachpixel is labelledwith the nameof the persondepicted.

Nor mally the text would be placedalong x, however this is not possiblesincex is

alreadyin use.Additionally this problem cannotbesolvedby addingameta dimension

where meta = 0 is the imageand meta = 1 is the meta-data,sinceevenat meta = 1

there would still be the original valuesfor x and y. Instead an identity other than x

would haveto be usedto placethe text along, e.g. name.

The �rst problem of this approachis that the useof non-standard identities would

makeit harder to search the hypermedia.Secondly, the nameof eachpersonhasbeen

added`by value'.This meansthat if aperson'snamechangesall instancesof that name

throughout a hypermedia must be updated. A better approach would be to store a

name `by reference'. This is similar in concept to the normalisation of databasesto

reduceredundancy.

5.3.6 Redirection

Atomic Hypermedia allows redirection, which usesan identity of an atom — the

`subject identity' — to refer to an identity in another atom — the `object identity'.

In many casesthe object identity would be an index identity, but this not true by

de�nition. The position assignedto the subjectidentity refersto the sameposition for

the object identity.

Subject identities alwaysend with the text id. The total form of the identity is

either xxx id or yyy xxx id. xxx is the object identity and yyy is a `local name' for

the identity. Local namescan be used freely, but are required when for a particular

atom two separatereferencesare made to a single object identity. For example,an

atom may havethe subject identities f ir st name id and last name id. This is shown

in usein sectionx5.3.6.1.

Considerthe following example.In ahypermediathere isasub-structure of names

which hasthe dimensionsname � x. The �rst name in this record is “Mar garet” so

that (name = 0; x = 0) holds `M', (name = 0; x = 5) holds `r' etc. The secondname

5. ATOM I C H YPERM ED I A 166

FI GU RE 5.9: Image with regionshighlighted

is “James”, (name = 1; 0 � x � 4). Now consider the picture shown in �gur e 5.9.

For the atoms within the areaA the property (name id = 0) is assignedand for the

areawithin B (name id = 1) is assigned.If there were any atoms appearingin both

areasthe property (name id = 0; 1) would be assignedusing multiple positioning.

This approach allows the application to deduce that for certain atoms there is a

link to other content within the hypermedia9. Within this hypermedia it is possible

to search for a particular name,and having found the appropriate position along the

name dimension, search for atoms that exist at, for example,(name id = 1) to de-

termine which atoms havea link to this name10. It is also possibleto locate images

that feature aparticular person,or evenreferenceonly the atomswithin imageswhich

depict that person.

The datareferred to doesnot needto be two dimensional.For example,if aperson

changestheir namethe atomsat a particular position of name could be madedeepin

a revision dimension. Theseatomscould alsohavea year id identity which refersto

a year � n sub-structure listing years.

In this exampleanamehasbeenassignedto an imageasaform of meta-data.Note

that in Atomic Hypermediawhat auserwould considermeta-dataisnot adistinct type

from other content and therefore meta-datacantakeanyform. A sub-structure could

be referencedwhere the content at an index position is an image,video or sound.

9Sectionx6.9.2 discussesa function speci�cation which allowsthe oppositeoperation, that is given
an atom the function �nds which atomspoint to it.

10An exampleimplementation of this is shown in sectionx6.9.3.

5. ATOM I C H YPERM ED I A 167

5.3.6.1 Further redirection

This example discussesa hypermedia storing details about a family. This example

makesextensiveuseof linking to sub-structuresusing redirection.

Eachpersonin this hypermedia is identi�ed by a position along a person dimen-

sion and is describedby severalattributes. To allow for changes,and to minimise the

amount of redundancyin the datastructure all of the descriptiveattributes are stored

in separatesub-structuresand therefore can be re-usedthroughout the hypermedia.

For example,in this hypermedia there is a sub-structure storing names.A sectionof

this record is shown below:

name x !
0 John
1 Smith
2 Fred
3 Bloggs
4 Betty

So a particular personmay havethe properties of (person = 0; f ir st name id =

0; last name id = 1). Note that the personis describednot by the contentsof atoms

which havea person identity but by the addressesof theseatoms.Only a singleatom

is required for this descriptionand the content of the atom is irrelevant.

Changesto a person's details can be shown by changing the properties of the

atoms.Consideralsoa yearsub-structure:

year n !
0 1977
1 1980
2 1978
3 1995
4 1987

Sincethe year indicesdo not signifyanything in particular, there isno requirement

for the yearsrepresentedto be in anyparticular order. Rather, the entriesin this record

5. ATOM I C H YPERM ED I A 168

were createdasneeded11.

When a person is referenced,by selecting(person = 2), for examplethere may

be a number of atoms captured. It is likely only a single state would be required

so one of these candidateatoms would be selectedaccording to one of the other

properties, suchasthe atom where the year id �eld referencesthe highestnumber of

all candidates.Seesectionx6.9.5 for an implementation of a function to �lter in this

manner.

If, as in the previousexample,it wasdesired to show where in imagesa person

appearsthe identity addedwould be person id and not anyparticular name.

It is alsopossibleto categoriseimagesaccording to the eventsthey depict. Con-

sider that every imageaddedhasa image index identity. A record of eventscould be

de�ned asbelow:

event eventdescid image id
0 0 0,1,4
1 2 2,6

eventdesc x !
0 A lovely picnic
1 Bob's wedding
2 Christmas

Of course,the atomsmaking up the eventdescrecord could be deepin a dimen-

sion suchasdetail and neednot be text, but canbe anymediatype. Equally the event

record could be deepin year id so that for a recurring eventsuchasChristmasa sin-

gle event position describesthe whole group yet the imagesfor individual yearscould

still be separated.

Now consider some of the queriesthat can be carried out on this data. For ex-

ample,selectingall of the atomswhere (image id = 2) to discoverall of the contexts

where a particular picture is used.It is possibleto determine the context of the useby

the other identities presentfor theseatoms.For example,if the atomshavean event

identity it is known the picture describesa particular event, whilst the presenceof a

11It might be assumedthat similar records would exist for month and day.

5. ATOM I C H YPERM ED I A 169

person identity showsthe image is being used as the main descriptive image for a

particular person12.

5.3.7 Interfacing

It has been mentioned previously how an external application may need to access

an Atomic Hypermedia. This section considerswhat operations must be supported

to allow this. There are arguably many high-level conceptsthat could be considered

and argued for, and one proposal is intr oduced in chapter 6. Additionally there are

middle-layer operations which would provide a more useful and ef�cient interface

method. However, this section is only concerned with the core abilities that the hy-

permedia application must provide to provide a complete interfacewhich other lan-

guages/approachescanbuild upon. Thesecore abilitiesare simply the setof low-level

operationspossibleon ADS, and dealwith editing the properties or querying atoms.

The interfacemust support the creationandthe deletion of atomswith aparticular

address.It must be possibleto query whether an atom existsat a particular address,

and if so, to return the content stored. It must alsobe possibleto changethe content

of an atom.

The applicationshould alsoreturn a list of referencesto atoms,or the addressesof

atoms basedon a supplied list of dimension identities. A referenceis a pointer to an

atom, independentof its current address.The routine should return referencesto all

atomswhich haveat leastthoseidentities. If no identities are suppliedthen references

to all atomsin the hypermediaare returned.

It should also be possibleto manipulate properties. Identities should be able to

be created,deletedor modi�ed. It should alsobe possibleto changepositions for an

identity. Furthermore, it should be possibleto retrievea list of identities for an atom

basedon the atom's referenceand the position for a particular identity.

12At least,a personin somecontext. For example,dif ferent imagesmay be usedalong the year id
dimension for a particular personsignifying someone'schangingappearance.

5. ATOM I C H YPERM ED I A 170

5.4 ZigZag

Of all existing hypermedia approaches,Atomic Hypermedia sharesthe most in com-

mon with ZigZag [77][67][70] by Ted Nelson.

5.4.1 zzStructure

ZigZag is basedon a data structure calledzzStructure. The relationship is similar to

how Atomic Hypermediais basedon ADS although the abilitiesaddedby the higher-

levelconceptdif fer.

zzStructure consistsof `cells' which exist in a number of dimensions.For each

dimension a cell hastwo connections:`poswards' and `negwards'. The posward con-

nection of a cell is joined to a negward connection of another cell. It is valid to create

a loop of cells(a wheel) and for a cell to be connectedsolelyto itself.

All cellsin the zzStructure existin all dimensionsalthough there isno requirement

for a cell to be connectedto any others for any given dimension. Dimension names

are pre�xed with d:, e.g. d:name, d:x etc.

Unlike ADS there is no concept of a numeric position along a dimension. It is

possibleto emulate this by eachcell of content being joined to another cell along

an arbitrary dimensionswhich provide meta-data.So eachcell could, for example,

havea d:property dimension along which eachidentity is named.From eachof these

cellsanother cell could be connection along d:position which contains the numeric

position.

However, note that this approachduplicatesthe dimension identity. Eachidentity

�rst appearsin the structure itself and it alsoappearsasthe contentsof the cell along

d:property. In fact, there is no reasonwhy the dimensionnamedalong d:property has

to be the same,or bearanyrelation to the identity in the structure. A virtual structure

basedon d:property and d:position can be built which shares nothing in common

with the zzStructure.

In zzStructure cellscontain arbitrary data, e.g. a pieceof text, an imageetc. Cell

containsare discussedfurther in sectionx5.4.2.1.

5. ATOM I C H YPERM ED I A 171

FI GU RE 5.10: “Hello” representedwith cloning

5.4.2 ZigZag

ZigZag takeszzStructure and adds the ability of cloning. Cloning a cell in ZigZag

createsa new cell where the contents of the two cellsare linked so that a changein

one cell's content is re�ected in all cells13. Cloned cellsare connectedalong d:clone.

Aside from the d:clone dimension all dimensionsin a clone are independent of the

original cell. Figure 5.10 showsa representationof the word “Hello” using cloning.

Note that any amount of text can be createdusing a single copy of eachletter, with

eachoccurrencebeing a clone. It would be possible,for example,to start from any

occurrenceand navigatealong d:cloneto �nd other occurrencesof that letter in con-

text. Using a single-letter per cell is just one usefor ZigZag, eachcell could instead

hold a name and by navigating along d:clone other placescan be found where that

nameis referenced.

The use of cloning above seemssimilar to use of multiple positions as shown

in �gur e 5.7, however there are signi�cant dif ferenceswhich becomeobvious when

multiple positioning is used for more than one dimension simultaneously. Consider

the four pixel imageshown in �gur e 5.11 which featuresa simpli�ed view of Atomic

Hypermediawhere a pixel is a primitive type. Two of the pixelsare red, one is green

andone isblue. With cloning therecould beasingleredpixel which isclonedto other

locations. However, tr ying to specifythis behaviour using multiple positioning with

(x = (0; 1); y = (0; 1)) is incorrect sincethis captures (0; 0), (0; 1), (1; 0) and (1; 1).

The correct emulation of cloning is to use redirection and in this casethere would

be a sub-structure of colours and the properties for the top-left atom would be (x =

0; y = 0; col id = 0) and the bottom right atom would have(x = 1; y = 1; col id = 0).

It is possibleto comecloserto the ZigZag cloning method by changingthe wayin

which multiple positionsare speci�ed in ADS. This new method would allow multiple

13Somereadersmayprefer to think of a singlecell which existsin manyplaces

5. ATOM I C H YPERM ED I A 172

FI GU RE 5.11: Examplefour pixel image

FI GU RE 5.12: Alternativeaddressingmethod

setsof properties which are independentsuchasin �gur e 5.12. There are arguments

againstthis change.Firstly, the `commastyle' method is a useful method asit allows

the userto specifya common setof properties.With the alternativemethod common

identities suchasimage would haveto exist in eachaddressset,creating redundancy.

Both methodscould be in usesimultaneouslybut this would increasethe complexity

of the speci�cation.

Secondly, there would still be the issueof reusingcommon dimensionsin dif ferent

contexts discussedin section x5.3.5. Consider the logical extension of the cloning

approach where there is only a single instanceof eachcharacterwhich is cloned in

every caseit is neededand the task of labelling a pixel with some text. Even with

multiple setsof properties for eachcharacterthere is still a problem sincewithin a

property set the x identity will be usedmultiple times, i.e. for the position within the

imageand for the position along the text string.

5.4.2.1 Cell contents

Whilst the content of an atom in Atomic Hypermedia is strictly limited to a single

character, ZigZag doesnot de�ne the granularity of content. This makesAtomic Hy-

permedia slightly more predictable than ZigZag. However, both types of structure

are largely de�ned by the choiceof dimensionsand so for either structure to be pre-

dictable a standard for dimensionsneedsto be de�ned. Atomic Hypermedia hasthe

additional requirement of needing to de�ne how media typesare representedwhilst

ZigZag needsto de�ne formal types.

5. ATOM I C H YPERM ED I A 173

ZigZag does not include a method for addressingdata within a cell, although

this is under discussionnothing hasbeenformalised.There is an argument that cells

should be atomic in that they are the smallestunit of data and should not be part-

referenced.The logical extensionof this principle would mean that eachcell would

contain asinglecharacterin the samewayasADS. Of course,anarchitect of aZigZag

hypermedia may decide that the characterlevel is unnecessary for imagesand make

the atom type for imagesapixel. This ispossiblesince,unlike ADS, zzStructureallows

more than a singlecontent type. The trade off for this �exibility is complexity. Appli-

cationsthat work with ADS canbe assured that only charactersneedto be processed,

for ZigZag applicationsthe requirement is lessstrictly delimited.

5.5 Conclusion

This chapter intr oduced Atomic Data Structure and shown how this can be used

asa basisfor Atomic Hypermedia. This approach to modelling hasadvantagesover

traditional node-basedstructures:

� Only a singleprimitive data-typethroughout the whole datastructure which is

capableof representinganyother datatype.

� Single addressingmechanismfor data at any level of complexity from compo-

nentsof typesto whole documents.

� Content canbe arrangedalong arbitrary dimensionsto expressvariousrelation-

ships.

5.5.1 Further work

There are manypossibilitiesfor further work in this area.Primarily an Atomic Hyper-

mediasystemshould be implemented to better explore the issuesraised,allow quan-

titive measurementsof performanceand to examinehow userswork with an Atomic

Hypermedia in practice.Additionally, work can be carried out on the a speci�cation

languageto standardiseincorporation of media types(x5.3.2).

174

CH APTER 6

H ED GEH O G

6.1 Overview

Sectionx5.3.7 discussedthe requirementsto allow a programming languageto ma-

nipulate Atomic Data Structure. In this section an exampleprogramming language,

`Hedgehog', is intr oduced. Hedgehog is not intended to be only programmatic way

of manipulating ADS, and is only one exampleof this type.

The principle behind Hedgehog is that manipulation of atomsis the fundamental

operation to be performed on ADS. The languageshould therefore emphasisethese

operations.Whilst it is possibleto createinterfacesfor anyof the operationsdescribed

in this section in a procedural or object-oriented languagethe resulting programs

would be relativelyclumsy. For example,forcing valuecontext (x6.4.5) for reference

(x6.2.1) x can be achievedin Hedgehog with a simple underline — x — whilst in a

procedurallanguagea function call would be needed— toValue (x).

Furthermore, the languagewasto emphasisthe paradigmof a �ow of information

being affectedby a number of operations.

6.1.1 Relatedwork

Whilst as the �rst languagedesignedfor the manipulation of Atomic Hypermedia,

Hedgehog is by de�nition novel, its design is in�uenced by a number of existing

languages.

The �ow of referencesbetween functional blocks (x6.3.2) is reminiscent of the

6. H ED GEH OG 175

piping abilities of UNIX shells.The synchronisation of inputs describedin section

x6.3.2 wasinspired by Prograph [13].

The useof recursionto provide a looping construct is possiblein many program-

ming languagesbut is perhapsmore typical of functional languagessuch asHaskell

[55] or Lisp.

The notation usedfor lists (x6.2.2) is similar to that of [12]. Although unlike the

descriptionsin [12], Hedgehog listscanconsistof multiple types— strings,numbers,

etc. — sinceanycontent in Hedgehog representedby atoms(x6.2.3), this restriction

is essentiallypreserved. Additionally the ++ operator is taken from [12].

6.2 Data types

Hedgehog hastwo primary datatypes:listsand scalars.

6.2.1 Scalar types

Conceptually scalarsare single valuessuch as an integer, real number, characteror

pointer. In Hedgehog there are only two scalartypes;charactersand atom references.

A characteris a single Unicode charactercomplementing the type of atom con-

tents. Charactersare used to build up more useful virtual data-typesas discussed

in section x6.2.3. Characterswithin a Hedgehog program are surrounded by single

quotes,e.g. X .

An atom reference — or simply `reference' — is a pointer to a particular atom

independent of the atoms addressin ADS. Referencescannot be representedin text

form in the samewaythat the valueof a pointer in C or a referencein Javacannot be

sensiblywritten down.

6.2.2 Lists

Lists are broadly equivalentto arraysin other programming languages.Eachentry in

a list is a scalar, list or variable.Lists are surrounded by square bracketsand entries

separatedby a comma. There are two typesof list which vary by the classof scalars

6. H ED GEH OG 176

that canbe usedasentries.Lists which contain charactersare called`valuelists' whilst

listscontaining referencesare `referencelists'.

Lists can contain any statementtype (x6.3.1) which includesother lists and vari-

ables.No matter how deepa list becomesthe resultantscalarsmust be of the appro-

priate type.

The following is an examplevaluelist. This exampleincludesnestedlistsand vari-

ableswhich are describedin sectionx6.2.6:

[H ; i ; X; [y ; Y]]

Hedgehog is list-centric and scalarscanbe treatedassingleelement lists.

6.2.3 Virtual data-types

Although charactersare the only value-type scalarwhich exist natively, Hedgehog

de�nes strings, integersand realswhich existby convention.

The convention for strings is simply that a string is a list of characters1, such as

[H ; e ; l ; l ; o]. Sincethis is cumbersometo write double-quotescanbe used

to symbolisethe samething, e.g. "Hello " .

The convention for numeric valuesis essentiallythe same,the numbersand sym-

bols which make up a �gur e are placed in a list. An approximation of � would be

[3 ; : ; 1 ; 4]. Again, this is cumbersometo useand so the syntaxof Hedgehog

allowsnumbersto be written directly, e.g. 3:14.

This raisesthe question of how 3:14 is dif ferent to "3 :14" since when written

long-hand in list form the lists appearidentical. The answeris simply that there is no

dif ferencebetweenthe quoted and unquoted version.

Hedgehog, like Perl [83], is looselytyped. Numberscanbeusedasstringswithout

any type-castingor conversion.For example,it is valid to perform a string concate-

nation between 3:14 and "Hello " , which would give the result "3 :14Hello " . Note

that the answerin this caserequiresquotes sinceit contains charactersthat are not

1This is similar to the C approachexceptwith Unicode and without the ending null character.

6. H ED GEH OG 177

allowed unquoted. If the operandswere 3:14 and 17 the answercould equally have

beenwritten as3:1417or "3 :1417" .

Equally a string canbe usedasa number. If the string happensto contain a valid

number sequencethen that sequenceis taken asthe value. Empty strings or strings

containing only white spacehavethe value0 and all other strings the value1. There-

fore " Brown" + " Cow" givesthe answer2.

6.2.4 Valuelists in use

Sincelists cancontain other lists they cantherefore consistof virtual data-types,such

as[" Hello " ; "World" ; 3:14] which is of course,equivalentto:

[[H ; e ; l ; l ; o]; [W ; o ; r ; l ; d]; [3 ; : ; 1 ; 4]]

There is aconvention for the standard Hedgehog operatorsthat the outermost list

is usedto separatemultiple valueswith a secondlevel list being usedfor data-types.

Therefore [H; e ; l ; l ; o] isalist of �ve characterswhilst [[H ; e ; l ; l ; o]]

is a list of one string.

Note that for the �rst examplewith a scalarasthe entry in the outer list, the oper-

atorswill treat this asa string with a singleentry, e.g.: [[H]; [e]; [l]; [l]; [o]]

Now considerif the list had an additional nesting, suchas:

[[[H; e ; l ; l ; o]; [W; o ; r ; l ; d]]]

Firstly, it is usefulto usethe quoted notation to simplify the appearanceof this list,

giving:

[[" Hello " ; "World "]]

In the casewhere the operator, when expectinga singlelist of characters,encoun-

ters a nested list the contents of the inner lists would be �attened in position, the

equivalentof:

["HelloWorld "]

6. H ED GEH OG 178

FI GU RE 6.1: Atom ReferenceChain

Note that the conventions just describedare only conventions for the standard

Hedgehog operators.A usercande�ne functions which processdata in any way they

wish.

6.2.5 Referencelists

Sincereferencescannot be representedin text form neither can referencelists. Ref-

erence lists can, however, be passedaround a Hedgehog program. Whilst the term

`referencetype list' is accuratefrom an implementation point of view, listsof this type

behavein two distinct waysdepending on the context in which they are used.The

two forms of referencelistsare known as`collections' and `chains'.

A chain is a list of referencesthat are considered to be in sequenceand behavesin

the samewayasan ordinary list. When usedin a scalarcontext (x6.4.1) an individual

referencehasthe valueof the content of the atom it references.Figure 6.1 showsa

representationof a chain which would be treated as the value 1994 when in value

context.

A collection is similar to setin traditional mathematics;the referencesare not con-

sidered to be in any particular order and there are no duplicate references.When a

chain is used in collection context the ordering in the chain is considered lost and

duplicateentriesremoved.Any nestedlistsare �attened into the unordered structure.

Alternatively when a collection is usedin chain context the resulting ordering is un-

de�ned, i.e. the resulting ordering is not predictable. In section x6.5.7 a method is

describedby which a collection canbe ordered into a chain in a de�ned manner.

6. H ED GEH OG 179

6.2.6 Variables

Variablesare identi�ed by a leading capital letter but can consist of upper or lower

caseletters,numbersand the underscore symbol.Variablescanhold scalarsor lists.By

convention the variableUrepresentsthe collection of the entire hypermedia.

Variablesdo not need to be declared before they are used.All variablesare local

to the statementblock (x6.3.2) they are declared in, with the exceptionof Uwhich is

global.

6.3 Structur e

6.3.1 Statements

Hedgehog programsconsistof a number of `statements'.A statementis one of the

following types:�lter , ordering, block, function call, list, variable,conditional or null .

Filter statementsare concerned with the selectingreferencesor values.Filter state-

mentsare discussedin more detail in sectionx6.4.

Ordering statementschangethe properties of atoms either in terms of identities

or positions.Ordering statementscanalsocreatenew atoms.Ordering statementsare

discussedin sectionx6.5.

A block is a collection of statements.Blocksare discussedin sectionx6.3.2.

Function calls passinput to a named statement block (x6.3.2) and receivethe

output from that block. Function de�nitions are discussedin sectionx6.3.4.

A conditional is the common concept of an `if statement', and allowsa choice of

executionpathsdependenton somevalue.Conditionals are discussedin sectionx6.6.

null is a statementwhich producesno output regardlessof the input. Using null

allowscatenas(x6.3.2) which existonly for their side-effectswith their resultantout-

put not forming part of the output from the function. The term side-effect refersto

operationssuchaschangingof variablevalueseither to havea global effect — suchas

operationson U— or in preparationof someother catena.

6. H ED GEH OG 180

6.3.2 Catenasandblocks

In aUNIX-like operatingsystemcommandscanbe joined together by the mechanism

of `piping'. For example,ls -1 returns a list of �les whilst ls -1 | sort | grep e

producesa list of �les sorted in alphabeticalorder with only the entriescontaining the

letter `e' remaining. Note that the �nal step in the chain returns the output to the

calling routine, which in this casedisplaysthe resultsin the usersshell.

Hedgehog statementscanbe joined together in a similar way. Eachstatementhas

an input and an output `stream'2. The output from a statementcan be directed into

the input of another statement.The notation for the redirection is the) symbol.

A singlestatement,or a number of statementsjoined in this way is called`catena'.

A generalisedcatenamay look like:

(: : :)) (: : :)) (: : :)

The detailsrepresentedby the ellipsesabovewill be discussedin the following sec-

tions. As a convention the terms `left' and `right' are usedwhen referring to relative

positionsof statementsin a catena.This re�ects the generalcaseabovewhere a state-

ment redirectsits output to a statementto its right. This is a descriptiveconvention;

the actual spatial layout is not important and in some cases̀ right' may be spatially

down and left.

A `block' is one or more catenas.Blocks are the functional groups of Hedgehog.

For example,functions (x6.3.4) are namedblocks with arguments and the testsand

branchesof a conditional statement(x6.6) are alsoblocks. Blocks are notated with a

box surrounding them, e.g.:

(: : :)) (: : :)) (: : :)
(: : :)) (: : :)

The output from a block is a merging (via _, x6.4.3) of all un-redirected output

streams.In the aboveexamplethere are two un-redirectedstreamsat the far-right end

2This terminology re�ects the UNIX usage.

6. H ED GEH OG 181

of eachcatena,thesetwo streamswould be merged to produce the output from the

block.

If the output from a catenashould not be included in the output from the block

the output streamshould be directedin a null statement.

The input streamto a block is availableasthe specialvariableinput . Note that an

empty block passescontent verbatim.

Execution order with a block follows a number of rules. For most purposesthe

order is intuitive; top-to-bottom, left-to-right. However, for somecasesit is useful to

understandthe completerule-set.

Execution is carried out, nominally, in vertical order. That is, the left-most, top-

most statementis executed�rst. Execution carries along that catenauntil either the

last statementis reachedor a statementwith multiple inputs is reached(x6.3.3). For

the simpleblock abovethis order would be:

1) 2) 3
4) 5

Where a statement requiring multiple inputs is reached(x6.3.3), the statement

joins a `pending' queue. When execution can no longer continue for the current

catenaeither becauseof an input dependencyor the end of the catenais reachedthen

the pending queue is consulted. Each statement in the queue is checkedregarding

whether the statementcanexecute— i.e. if all input dependencieshavebeensatis�ed.

If so, the item is removedfrom the queue and execution continues from this point.

If there are no valid possibilitiesin the pending queuethen executioncontinueswith

the left-most statementdown from the current location.

In the caseof a catena split (x6.3.3), one branch is followed with the other

branchesjoining the pending queue.Which branchis followed and the order in which

the othersare queuedis unde�ned.

The executionorder for a simplesplit and merge:

6. H ED GEH OG 182

1) 2
)

5) 6

)
3) 4

)

7

Sincewhich branch is followed and which is queuedat the split is unde�ned, the

following is equallypossible:

1) 2
)

6) 7

)
3) 4

)

5

6.3.3 Branching

The �ow of a catenacan be split and merged. The term `branching' representsboth

behaviours.

A split is where the output from a statementis duplicatedand sentasthe input to

two other statements.The type of the data is preserved when split.

A merge is the oppositeaction with two outputs becoming recombined.The lists

involved in a merge are combined using the _ operator describedin section x6.4.3.

The following catenademonstratesboth splitting and merging:

6. H ED GEH OG 183

(: : :)

)
)

(: : :) (: : :)
)

)
(: : :)

)
(: : :)

)

(: : :)

The branching shown here is binary, in that in eachcasethere are two streams

involved in eachoperation. This is not a restriction inherent in the language,and any

number of streamscanbe output from a split or input into a merge.

As previouslydescribedthe output from a block is the merged output of all un-

redirected streams.The exampleabove would contribute two streamsto the �nal

output.

A specialcaseof branching is the `list head' operation which sendsthe �rst entry

in a list a dif ferent path to the remainder. A list-headis denoted with a singlearrow as

shown below, the remainderof the list, the `list body', continues with double arrow

notation. Example:

[1; 2; 3] ! 1)

[2; 3]

Note the following:

� If multiple list headsare speci�ed the �rst entry is duplicated to eachstream.

� If multiple list bodies are speci�ed then the body part is duplicated for each

stream.

� If only a list headis speci�ed the body is discarded.

6.3.4 Functions

Hedgehog programsare separatedinto functions. There is no concept of a starting

function suchas`main' in Javaor C. Hedgehog functions are calledeither my other

6. H ED GEH OG 184

functions or, ultimately, the hypermedia application using Hedgehog asa processing

language.

Functions are simply blocks with an assignedlabel and an optional list of argu-

ments.Shown below is a function named`bingo' which takesthreeargumentswhich

are assignedthe variablenamesA, Dand H.

bingo (A; D; H)

Since`bingo' hasan empty statementblock it will passcontent verbatim.

6.4 Filter

The term `�lter statement' captures the majority of statement types in Hedgehog.

Tasksaccomplishedwith �lter statementsinclude:

� Selectinga setof references.

� Retrieving the contentsof an atom.

� Retrieving the position of an atom along a given dimension.

� Testingvalues.

6.4.1 Contextswith �lters

Two classesof scalarshave been described;value and reference. These types form

two contexts in which data can be considered. Speci�cally, valuesexist only in value

context but referencescanbe considered in either.

When a referenceis considered in valuecontext, the valueusedis the content of

the atom referenced.An exception to this is in the caseof position selectors(x6.4.2)

where the valueis the position along the dimension speci�ed.

In the casewhere an binary operator comparesa referenceto a valuethe reference

will behavein valuecontext. This alsohappensfor operatorswhich only work in value

context. Seesectionx6.4.3 for more on �lter operators.

6. H ED GEH OG 185

By default the returned type will be referencesif either operandwasof reference

type. In sectionx6.4.5 a method of forcing valuecontext is discussed.

6.4.2 Positionselectors

A position selector is a modi�cation to a reference which alters the value context

of the reference. Instead of the value context being the contents of the atom it is

the position along the speci�ed dimension. Note that the modi�ed behaviour only

lastsuntil a value is returned. When a position selectorhasreturned a reference,the

referencedoesnot maintain a modi�ed valuestatewhen later used.

The notational form is a full-stop betweenthe referenceidenti�er and the identity,

e.g. U:x refersto the x identity of the collection U. There is a shortened form where

simply the identity is acceptable.In this casethe referencedcollection is the prevailing

input (x6.4.7).

If an individual referencedoes not contain the identity speci�ed it is not added

to the output collection. Seesection x6.4.4 for more about how lists are used as

operands.

6.4.3 Filter operations

6. H ED GEH OG 186

Operators Description
+ � �� Basicmathematicaloperations.All inputs are considered

in valuecontext. + and � alsowork asunary operators.
< � > � Logical comparisons.All inputs are considered in nu-

merical valuecontext. If returning a valuewill return 1
or 0 indicating true or false.If returning a referencewill
return the reference if the test was passedor nothing
otherwise.

= 6= Logical comparisons.In referencecontext the references
themselves,not the contents of the cells referencedare
compared. If returning avaluewill return 1 or 0 indicat-
ing true or false.If returning a referencewill return the
referenceif the test waspassedor nothing otherwise.

^ Logical AND, seesectionx6.4.6
_ Logical OR, compliment of ^ , seesectionx6.4.6.
r Dif ference operator. Returns a list of values in left

operandthat do not appearin the right operand.
! Logical NOT . Operand treatedin valuecontext.

++ Returns the concatenationof two lists.

Parentheseshave the highest preference followed by ! then, in order, � � � +

followed by < � > � = 6= r ++ with ^ and _ having the lowest precedence.

Note that all binary operatorsare left associativeso that 1 � 2 � 3 is equivalentto

(1 � 2) � 3.

6.4.4 Listsasoperands

All operatorstake lists asoperandsand produce lists asoutput. When there is exactly

one entry in eachoperandlist the behaviour is asexpected.With other combinations

the behaviour is worth explaining.

The generalcaseis that eachcombination of left and right entriesis processedand

all resultsadded to the output list. For example,the result of [1; 2; 3] � [5; 6] would

be [5; 6; 10; 12; 15; 18], i.e. [1 � 5; 1 � 6; 2 � 5; 2 � 6; 3 � 5; 3 � 6]

As mentioned previously comparison operators in reference context return the

referenceif the test is true and nothing otherwise.Sincethe output list is madeup by

the concatenatedresultsof all tests,it canbe seenhow an operator �lters results.The

test U:x > 5 will only add referencesto the output which passthe rest.

6. H ED GEH OG 187

Equally a position selectorby itself forms a self contained test on this principle,

U:x on its own only addsreferencesto the output collection which passthe test of

“contains an x identity”.

6.4.5 Forcing valuecontext

Referencescan be turned into valuesby underlining an operand or statement.The

placementof the underline cangreatlyaffect the behaviourof the operation. Consider

the following example:

(U:x)

The U:x will select the x identity of all referencesin U. The default behaviour

is to return the referenceswhich passthis test, i.e. the referenceswhich have a x

identity. The parenthesisin this particular exampleare super�uous, but are included

for consistencywith the following examples.Now considerthis statement:

(U:x)

Underlining the U:x part forcesthe return type to be a value,and the valuetype of

a property selectoris the position. So the returned datawill be a list of positions that

which existalong x. Finally, considerthe statement:

(U:x)

Note that the underline now includesthe parentheses.This fundamentallychanges

the behaviour since the statementbeing forced to value context is not U:x but the

parenthesesthemselves.In this casethe U:x will return the appropriate referencesand

these referencesare converted to value context which will be the contents of the

atoms.

Note that referencescanbe converted to valuecontext, but the reverseis not true.

6. H ED GEH OG 188

6.4.6 Joining�lters

For anything other than the most trivial of �lters, operatorsmust be joined in some

wayto representa more complexbehaviour. Asmentioned in sectionx6.4.3 there are

operatorsusedto perform joins, AND (^) and OR (_).

AND takestwo lists are returns a list which containsentriesfrom both lists whilst

OR returns a list which containsentries in either list. Note that AND dif fers from =

in that duplicate entriesare removed.If [1; 2; 3] and [2; 3; 2] where compared with =

the resulting list would be [2; 2; 3] whilst with AND it would be [2; 3]. Note that OR

alsoremovesduplicateentries.

Two list entries are considered duplicatesif they consistof the samenumber of

list entries, and eachentry is identical. When checking an entry duplicate checking

descendsthrough nestedlists.

6.4.7 Prevailinginput

The input streampassedinto a �lter statement,whether a singlestatementor a block,

is known asthe prevailing input. The prevailing input seenby a statementis altered

only by the useof) ; statementscanbe nestedarbitrarily deepwith parenthesesand

keepthe sameprevailing input.

Prevailing input is representedby the symbol input where it needsto be explicitly

stated. For example, if it wasdesired to �lter a list of numbers so that only values

lessthan �ve were preserved, the test would be < 5. Since< is a binary operator it

needsthe operandto be explictly statedi.e. input < 5. This sectionof acatenawould

therefore look like:) (input < 5)) .

Prevailing input alsoaffectsposition selectorsdescribedin section x6.4.2. In the

casewhere the collection is explictly speci�ed suchasU:x the prevailing input is irrel-

evant.However, if only the dimension identity is speci�ed the prevailing input is used

asthe collection. The following catenawould passonly referenceswhich havean x

identity and whoseposition along that dimension is lessthan 10:) (x < 10)) .

Note that input :x < 10 would haverepresentedthe sametest exceptwith surplus

syntax.

6. H ED GEH OG 189

Consider the �lter:

(x < 10 _ y < 10)

This �lter passesreferenceswhich have a position along x of lessthan ten or a

position along y of lessthan 10. The referencesdo not haveto haveboth a x and y

identity to pass.

The following �lter has a secondoperation basedaround an arbitrary function

which has data passedto it. This function operateson the prevailing input and so

this needsto be altered before the function is called.Note that the original prevailing

input is restored for the �nal test on y.

(x < 10 _ (A) somefunction ()) _ y < 10)

6.4.8 Filter function

As part of the set of standard functions (x6.8) Hedgehog de�nes a function named

`�lter' which providesthe capabilitiesof �lter statements.This function takesa single

list asan argument. The list hasfour entries:unary operator, left operand, operator,

right operand.Eachargument is a standard data-type.

For example, the �lter statement x < 10 can be achieved with

filter ([[]; "x" ; " < " ; 10]). Note the use of the null list, [], to show the lack of

an argument.

The �lter function allows �lters to be generateddynamically. For example,to de-

�ne a function that �lters referencesthat appearat position 10 or lessalong a dimen-

sion suppliedby the user. This could be achievedwith:

smallpos (Id)
filter ([[]; Id ; " < " ; 10])

6. H ED GEH OG 190

6.4.9 Filter examples

This sectiondescribessomesimpleexamplesusing�lter statements.For morecomplex

examplesseesectionx6.9.

The following exampleselectsthe �rst two sentencesfrom eachchapterfrom sup-

plied references:

chapter ^ sentence � 0 ^ sentence � 1

Firstly, note that operator precedenceand left-associativitymeansthis �lter is in-

terpreted as:

((chapter ^ (sentence � 0)) ^ (sentence � 1))

The �rst evaluatedtest will be chapter . This test may seemunnecessary sinceit

hasno comparisonoperatorsrestricting the rangeof atomsselected.However, there

is a restriction here, which is that the atomsmust havea chapter dimension(x6.4.2),

henceexcluding parts of the input which do not representa book, or similar.

The secondevaluatedtest will be sentence � 0 which only passesreferencesfrom

the prevailing input that havea position along sentence of greateror equal to zero

(x6.4.2).

These�rst two testshavetheir resultssetsmerged using AND ^ and this result

forms the left-hand operand for the outer merging. The right-hand operand for this

merging is the result of sentence � 1 which will passreferencesfrom the prevailing

input that havea position along sentence of lessthan or equal to one.

If _ wasused insteadof ^ asthe �rst join operator the expressionwould havea

very dif ferent effect. Consider an input consistingof a book and a newspaperarticle

— which doesn't haveanychapter identities. In this casethe �lter would selectall of

the book and the �rst two sentencesof a newspaperarticle.

The previousexamplemadean assumptionabout the structure of the newspaper

article, that there would only be one sentenceat position 0 and one sentenceat po-

6. H ED GEH OG 191

sition 1. If the article were divided into sections,so that the �rst sentencein each

section wasat position 0 then more than two sentencesfrom the article may be se-

lectedby the aboveexpression.This underlinesthe important of aconsistentstructure

asdiscussedin sectionx5.3.1.

The following �lter selectsthe a top-left and bottom-right sectionfrom images:

(x < 10 ^ y < 10) _ (x � 100^ y � 100)

Note that in the caseof an input imagewith dimensionsof 50 � 50, for example,

the �lter would still selectthe top-left section. In this caseit might be preferred that

nothing isselected.This �lter canbe modi�ed to selecta list of imageindicies(x5.3.3)

that have dimensionsof at least 100� 100 and make membership of this list be a

requirement for matching references.The revised�lter below replacesthe �rst clause

of the previousone:

x < 10 ^ y < 10 ^ image = ((x � 100^ y � 100)) image)

6.5 Or derings

Ordering statementswork with the properties of atoms. Tasksaccomplishedwith

ordering statementsinclude:

� Changing identities for an atom, from x to y for example.

� Creating or deleting identities.

� Altering positionsalong a dimension.

� Creation of atoms.

An ordering statementconsistsof one or more `ordering groupings' (OGs). The

generalform of an ordering statementis shown below is shown below:

6. H ED GEH OG 192

((OG)(OG)(OG))

The input to an ordering statementis a referencecollection except in the special

caseof referencecreation discussedin sectionx6.5.9.

6.5.1 Orderinggroupings

An ordering grouping consistsof a number of `ordering instructions'. Eachgrouping

providesa possiblematch for the input — normally a referencecollection. A match

occurswhen a referencematchesall identities listed as`subject identities' aspart of

the `identity transformations' (x6.5.2).

Groupings are listed in order of preference.Each referenceis testedagainsteach

grouping in turn, when a match is found no further comparisonsare made.If a refer-

encedoesnot match anyof the groupings it is not passed.

6.5.2 Orderinginstruction

An ordering instruction consistsof two parts, the `identity transformation' (IT) and

the `position transformation' (PT), separatedby a vertical bar e.g.:

IT jPT

6.5.3 Identity transformation

The `identity transformation' determines how identities are affected by this instruc-

tion. The generalform is subject ! object . subject can be any valid identity, re-

stricted identity, an asteriskor omitted. object can be any valid identity, an asterisk,

an underscore or omitted.

In the casewhere subject and object are both identities or restricted identi-

ties, atoms with the identity subject will haveit changedinto the identity object .

6. H ED GEH OG 193

If object is omitted the identity subject is removed. If subject is omitted then

the identity object is added to the references;subject and object cannot both be

omitted. In summary:

Identity Transformation Effect
x ! y Changeidentity x into y
x ! Removeidentity x
! y Createidentity y
! Illegal

The asterisksymbol is a wildcard. When usedasthe subject it matchesall iden-

tities not yet referencedwhilst as the object it resolvesto the sameidentity asthe

subject .

Identity Transformation Effect
� ! � Match all remaining identities, do not alter
� ! y Map all remaining identities to y
x ! � Equivalent to x ! x

For an atom to match againstan OG all of the atom's identities must be refer-

encedby IT statements.In many casesa � ! � should be usedasthe IT for the �nal

Ordering Instruction to match and preserve all unmatchedidentities.

As previously mentioned the left hand argument, subject , can be a `restricted

identity'. Theserestrictionsareappliedto adimensionto limit the rangewhich matches.

Theserestrictionscantake forms suchasx < 10, 5 < x < 15, x = 3 or x 6= 3.

6.5.4 Positiontransformations

Position Transformations alter the positions along a dimension where an atom is

placed.There are two basicforms of PTs: rangedspanand relative.PTs are not used

aspart of an Ordering Instruction which removesan identity.

A rangedspansetsthe positionsof atomswith a chosenrangeand increment. The

form of a rangedspanis start direction increment . start is the position at which

the �rst atom is placed.direction is either an upwardsor downwardspointing arrow

which describesin which direction atomsshould be added.An upwards — ascending

6. H ED GEH OG 194

FI GU RE 6.2: Atom setfor PT examples

FI GU RE 6.3: Position Transformationswith source and increment

— arrow preservesthe original ordering whilst a downwards — descending— arrow

reversesthe order. increment de�nes the steppingbetweenatoms.

For example,the rangedspan10 " 1 statesthat atomsshould be placedfrom po-

sition 10 onwards, the original ordering should be preserved and atoms should be

placedevery 1 positions.Figure 6.2 showsa setof atoms.Figure 6.3 showsthe result

of ordering theseatomswith the rangedspans10 " 1 and 10 # 1. In this example,and

the ones that follow, the resultsof the ascendingtransformation are shown on top

with the result of the descendingtransformation shown underneath.

If the start argument isomitted the lowestvalue— for ascendingtransformations

— or the highestvalue— for descendingtransformations— among the input is used.

Figure 6.4 showsthesetwo cases.

If the increment argument is omitted the original spacingbetweenthe atoms is

retained.Figure 6.5 showsthe transformation where the start valuehasbeensetbut

the increment hasnot.

Finally, if both start and increment are omitted, the rules of preserving start

FI GU RE 6.4: Position Transformationsomitting start

6. H ED GEH OG 195

FI GU RE 6.5: Position Transformationsomitting increment

FI GU RE 6.6: Position Transformationsomitting start and increment

position and preserving spacingare combined. For ascendingtransformations this

meansthat no changestake place, for descendingtransformation the positions of

valuesare effectivelyswappedasshown in �gur e 6.6.

6.5.5 Mergingdimensions

The order in which ordering instructions appearwith anordering grouping hasmean-

ing. The ordering is one of priority levels,the �rst statementin the grouping is the

highestpriority. Thesepriorities do not haveanyeffect unlesstwo or more statements

map onto the samedimension.

Consider the atoms shown in �gur e 6.7. Presumethe userwants to map both a

and b onto x. There are a number of waysthis could be achieved,but �rstly consider

two ascendingorder mappings. If the mapping for a hasa higher priority then the

atoms are ordered �rst by their a valuesand then by their b values.In this casethe

resulting pattern, readingalong x in ascendingorder, would be 1, 2, 3, 4, 5, 6, 7, 8.

FI GU RE 6.7: Examplepre-ordered atoms

6. H ED GEH OG 196

If alternativelythe mapping waschangedto makeb the higher priority the pattern

would insteadbe: 1, 5, 2, 6, 3, 7, 8. The table below showspossiblecombinations

basedon this exampleset, the �rst PT in eachrow is the higher priority one.

Ordering Outcome
a " b " 1 2 3 4 5 6 7 8
b " a " 1 5 2 6 3 7 4 8
a " b # 4 3 2 1 8 7 6 5
b # a " 4 8 3 7 2 6 1 5
a # b " 5 6 7 8 1 2 3 4
a # b # 8 7 6 5 4 3 2 1
b # a # 8 4 7 2 5 2 5 1

How could the pattern 1, 8, 2, 7, 3, 6, 4, 5 be achieved?This result is not pos-

sible with a singleordering, but is possiblewith two. The �rst statementreversesthe

ordering along b but only where a is equal to 2. Once this hasbeendone the pattern

can be achievedusing the 2nd prioritisation in the table above.Note the useof the

secondgrouping in the �rst statementto passatoms unaltered which do not match

the �rst grouping. If this grouping were omitted, only atoms where a is equal to 2

would be passed.

switch ()

a = 2 ! a j "
b ! b j #
� ! � j "

!

(� ! � j ")

!

)

b ! x j "
a ! x j "
� ! x j "

! !

6.5.6 Permanenceof e�ect

Sinceorder operationstakeplaceon references,the effectsof the changewill instantly

be re�ected in the ADS. If this is not desired then operationsshould work on a copy

of the atoms instead.Hedgehog de�nes a function namedcopy() which, when sup-

plied with a referencelist, will createnew atomswith the samecontentsasthe atoms

referencedin the input and with the sameproperty set.Note that this doesnot cause

an addressingclashsincetheseatomsdo not exist in the masterADS.

Basedon the function switch () de�ned abovea string could be createdwith the

6. H ED GEH OG 197

charactersin the new order with the catenas:

input) copy()) switch ()) (x ! j ")) ()) Temp) null
[Temp]

Alternatively this could be done without the Tempvariableby placing the bulk of

the catenadirectly insidesquare brackets.:

[(input) copy()) switch ()) (x) j ")) ())]

Note that the result must be enclosedwithin a setof square bracketsin order for

the result list to featureasinglestring asopposeda list of stringseachof one character.

6.5.7 Collectionsto chains

The previousexamplesshowedthe �rst useof the underscore symbol asan object .

This symbol is used to represent the ordering along the output list itself, i.e. it is

usedto de�ne a chain rather than a collection by making the order of the references

in the list predictable. Ordering instructions featuring the underscore do not affect

the properties of the referencedatom. Note that for the position transformation the

positions assignedrefer to the zero-index list. Any unde�ned indices are removed

from the output list.

6.5.8 Orderingandmultiplepositions

When working with dimensionsthat havemultiple positions,ordering statementsbe-

haveasthey would with multiple atoms. For example,an atom hasthe property of

x = 1; 2; 4 if the position transformation of 5 " wasapplied the property would be-

comex = 5; 6; 8.

To add multiple position to an atom the identity creation form is used.For exam-

ple, to add the property of image id = 2 to a set of references:(! image id j2 " 0).

Note that the creation form createsidentities where they do not exist but will multi-

position in caseswhere the identity doesexist.

6. H ED GEH OG 198

The oppositeoperation is to removemultiple position from an atom. In this case

presumablyonly a setnumber of positionsshould be removed.To achievethis is sim-

ply an identity removaloperation with a restricteddimensionidentity. Sothe opposite

of the previouscreation would be: (image id = 2 ! j)

6.5.9 Creatingreferences

Referencesarecreatedusingaspecialcaseof ordering statementwhere the input isnot

a referencelist but a value list. The identity transformations must consistof identity

creations.A string could be createdin the following way:

" Hello ") ((! xj0 " 1))

Note that this caseexpectsastraight list of charactersandnot the normal outer-list

for the multiple items form.

This operation createsatoms and returns referencesto them, but does not add

theseatoms to the masterADS. To commit the referencesto the ADS they must be

committed to the universalvariable(x6.7).

6.5.10 Orderfunction

The functionality of ordering statementsis additionally availablethrough a function

named`order()' which takesa nestedlist asinput. The outermost list representsthe

ordering groups. Within eachordering grouping list, eachentry is an ordering in-

struction.

Eachinstruction list consistsof nine entries.The �rst �ve entriesdescribethe sub-

ject identity: operand1operator1identity operator2operand2. For example,0 � x < 10

would be stored as [0; " < = " ; " x" ; " < " ; 10] and y = 2 would be [[]; []; "y" ; " = " ; 2].

The seconditem in the identity transformation list is the object identity. Note how []

is usedasa null value, rememberthat numbers are representedby lists so an empty

list signi�es no value.

The sixth entry is simplethe object identity, e.g. "y" .

6. H ED GEH OG 199

The �nal threeentriesrepresentthe position transformation and the valuessignify

the starting position, direction andincrement,e.g.10 " 1 isrepresentedby [10; " up" ; 1].

As a more complexexample,the switch () function previouslydescribedcould be

re-written as:

switch ()
[[]; []; "a" ; " = " ; 2; " a" ; []; "up" ; []]) I1) null
[[]; []; "b" ; []; []; "b" ; []; "down" ; []]) I2) null
[[]; []; " � " ; []; []; " � " ; []; "up" ; []]) I3) null
[[]; []; "b" ; []; []; "x" ; []; "up" ; []]) I4) null
[[]; []; "a" ; []; []; "x" ; []; "up" ; []]) I5) null
[[]; []; " � " ; []; []; "x" ; []; " up" ; []]) I6) null
order ([[I1 ; I2 ; I3]; [I3]])) order ([[I4 ; I5 ; I6]])

In the aboveexamplethe ordering is formed from severalstatementsfor clarity,

although it would be equallyvalid to form the list using a singlestatement.

The purposeof this form is to allow an ordering statementto be createddynam-

ically by a Hedgehog program itself, such as in the getvalue () function in section

x6.9.5.

6.6 Conditionals

Conditionals allow branching basedon certain input. The format for a conditional is

the keyword if followed by a block for the test and the block for the commandsto

executeif this test is met. Following this is an optional elsif providing an alternative

match. Lastly, an optional else keyword with a block of commandsto executeif no

if or elsif line matches.Aswith other programming languagesan arbitrary number

of elsif s maybe present.

Truth is evaluatedin the following way. An empty list or a list consistingof only

valueswhich evaluateto 03 is `false',all other listsevaluateto `true'.

The following conditional adds10 to the output if the valueof hin is greaterthan

10, 5 if the valueof input is lessthan 5, and input otherwise:

3This includesthe empty string for example.

6. H ED GEH OG 200

if input > 10

10
elsif input < 5

5
else

input

6.7 Altering content

Contents of atoms can be changedby passinga value list into a reference list. The

number of atomsin eachlist must be identical4. For example,the �rst �ve characters

of a string could be changedwith:

"Hello ") (U) (x � 0 ^ x � 4 ^ sentence = 2)) ((x ! j ")))

In this examplea nested�lter is usedto selecta number of referencesfrom Uand

order them into a chain. That setof ordered references̀ receives'the valuelist.

To createor deletecontent operationsare performed on U, the variablerepresent-

ing the entire ADS. For example,referencesrelating to books are removedfrom an

ADS with the catena:

U) (input r chapter)) U

In section x6.5.9 the method of creating atoms wasdescribedand it wasmen-

tioned that creating a referencewithin Hedgehog doesnot affect the universalADS

unlesscommitted. That commitment is simply writing into U, e.g.:

[1; 2; 3]) (! xj0 " 1)) U

)
U

4In the caseof nestedlists, the number of entriesin eachnestedlist must be identical, i.e. both lists
must havethe same`shape'.

6. H ED GEH OG 201

6.8 Standard functions

A number of functions are de�ned aspart of the languagespeci�cation. This section

describesthe operation, but not the internal working, of thesefunctions.

address() Returns the properties of the supplied input. Each ref-

erence forms a nested list in the output. Within each

output list a two entry list is used for the identity

and value, e.g. a two reference input may produce

[[[" x" ; 2]; [" y" ; 10]]; [[" z" ; 0]]].

chr () Returns a list of charactersassociatedwith the input list

of values,e.g. [65; 66] produces[A ; B]

filter (definition) Function versionof �lter statements,seesectionx6.4.8

identities () Returns a list of identities for each reference sup-

plied as standard input. For example a reference to

an atom within an image may produce a list of

["x" ; " y" ; "c" ; "n" ; " image"]

length () Returns the length of the list suppliedasstandard input.

Answeris returned asa singleentry list, e.g. [12]

ord() Returns a list of valuesassociatedwith the input list of

characters,e.g. [A ; B] produces[65; 66]

order (definition) Function version of ordering statements, see section

x6.5.10.

position (names) Returnspositionsfor namedidentities. namescontainsa

list of identities, e.g. [" x" ; " image"].

unique() Passesitems in the input which are unique in the input.

For examplethe input [1; 2; " Hello " ; 1] would produce

[1; 2; " Hello "].

value () Returns the valuestateof input, function equivalentof

underline.

6. H ED GEH OG 202

6.9 Examples

This sectioncontainsworked examplesof somehypermedia tasksusing Hedgehog.

6.9.1 Zero-indexing

Consider the casewhere of working with a collection that containsa number of im-

ages.Someof theseimageswere incorporated from �les, somewill be framesin video

clips and somewill be de�ned asbeing arbitrary collections of pixels. This last case

captures examplessuch as in �gur e 5.8 where an image is de�ned within another

image.

For somepurposeausermaywish to haveacollection of imageswhere eachimage

existsindependently, andstarts at (0; 0). Intuitively the usermaycreateafunction such

as:

imageToZero()

copy())

x ! x j 0 "
y ! y j 0 "
� ! � j "

!!

However, this function doesnot work asexpected.When the position transforma-

tions for x and y are carried out all input referencesare considered when �nding the existing

range. Therefore for two images,one where 0 � x � 10 and one with 5 � x � 15 the total

considered rangewill alreadystart at zero and no position transformation will take place.To

solvethis problem eachimageneedsto be considered individually.

The following function takesa list of image indices and for eachindex makesa copy of

the image relocatedto (0,0). Looping in Hedgehog is achievedby using recursion. In the

recursivefunction a list headoperation is usedto takethe �rst entry from the List argument,

processthis and add the result to the result of the function with the list body becoming the

new argument.

6. H ED GEH OG 203

imageToZeroList (List)

if List) length ()

List ! Head) null)
Body) null

(image = Head)) imageToZero()) Ordered) null
Ordered ++ imageToZeroList (Body)

else
[]

Initially imageToZeroList () is calledwith the complete list of identities in the input. The

function calledfor the “translate to (0,0)” effect is therefore:

translateToZero ()
imageToZeroList (image) unique ())

6.9.2 Referto me

This section describesa function which retrievesreferencesthat refer to the referencessup-

plied, i.e. if atom a hasthe property image = 2 and atom b hasthe property image id = 2,

passingthe referencefor a to this function would return the referencefor b.

This function takesa chain and returns a list of collections, one list for eachreferencein

the original collection.

Initially, it is usefulto considerthe simplercaseof a function which takesasinglereference

andreturnsacollection of referenceswhich referto this singlereference.The function retrieves

the list of identities for the argument referenceand passesthis to a function which will retrieve

all the referencespointing to the argument reference.Note that the returned data from this

recursivefunction is passedto unique asa single referencemay refer to our target reference

more than onceand duplicatesshould be avoidedin the result set.

referToMe(One)
referRecurse (identities (One))) unique ()

The function calledby referToMe is recursive,againto form a loop. For eachiteration the

function �lters referenceswhich havethe identity currently being considered and one of the

positionsheld by the referencebeing considered.

6. H ED GEH OG 204

referRecurse (List)

if List) length

List ! Head) null)
Body) null

(filter ([[]; Head++ " id " ; " = " ; (positions (Head) ! ())])) A) null
A++ referRecurse (Body)

else
[]

To give the functionality desired of being able to supplya referencelist to return a list of

collectionsreferToMe() is rede�ned with recursionto provide a looping effect:

referToMe(Chain)

if Chain) length

Chain ! Head) null)
Body) null

identities (Head)) Idlist) null
[referRecurse (Idlist)) unique ()] ++ referRecurse (Body)

else
[]

6.9.3 Appears

In this examplea function namedappears() isde�ned which returnsreferenceswhich referto

an item in a sub-structure holding a particular value.For example,it is possibleto search for

“Bob” in a (name� x) sub-structure and receiveacollection of referencesthat haveanameid

identity pointing to the appropriate item in the sub-structure.

The function must copewith the following requirements:

� The sub-structure may be more than two-dimensional, for example the atoms may

havethe properties of name� x � revision . The depth of the sub-structure must be

searched.

� The key searched for may appearin more than one place.The function should return

referencesto atomswhich point at anyof the occurrences.

� The index searched for, namein the aboveexample,should be speci�ed asan argument

to the function.

6. H ED GEH OG 205

The function appears() takesa collection of referencesasprevailing input and two ar-

guments: Find and Index . Find is the data which should be searched for and Index is the

identity to search along. For example,Index maybe “name” and Find maybe “Bob”.

appears() usesa recursivefunction, appearsRecur() to perform the check for Find

againstone position along Index . appears() forms the basecasefor this function and calls

appearsRecur() with a list of all positionsalong Index . appearsRecur() returns a list of po-

sitions along Index where Find wasmatched.The �nal stageof appears() locatesreferences

which havethe identity of Index with “ id” appendedand a position in the returned data.

appears(Index ; Tofind)
filter ([[]; []; Index ; []])) PositionList) null
appearsRecur(Index ; Tofind ; PositionList)) ResList) null
filter ([[]; Index ++ " id" ; " = " ; ResList])

The function appearsRecur() checkseachposition in the supplied list along Index and

returnspositionswhere Find appears.The function usesrecursionto checkeachentry in turn,

calling itself with a shortened list eachtime and appendingthe resultsfrom the recursivecall.

For eachposition — i.e. the Headin eachcase— a list of referencesat the current posi-

tion is retrieved. For thesereferencesthe function needsa list of addresspermutations. The

address() function cannot be useddirectly sincex should be excludedx from the permuta-

tions. For example,if the sub-structure wasname� x � revision the function should con-

siderall valid combinationsof name� revision . To this end a modi�ed versionof address()

named addrmod() is usedwhich is de�ned in section x6.9.4. addrmodtakesa list of identity

namesto excludefrom the output.

Once the list of addresseshas been generatedit is passedto appearsAddress() which

returns the result for a list of addresses.

appearsRecur(Index ; Find ; Positions)

if length (Positions)

input ! Head) null)
Body) null

filter ([[]; Index ; " = " ; Head])) addrmod([" x"])) Addr) null
appearsAddress(Index ; Find ; Addr) ++ appearsRecur(Index ; Find ; Body)

else
[]

6. H ED GEH OG 206

appearsAddress() is a simple recursivefunction to check eachaddresscombination in

turn using the function appearsAddressOne() .

appearsAddress(Index ; Find ; AddressList)

if lengthAddressList

AddressList ! Head) null)
Body) null

appearsAddressOne(Index ; Find ; Head)) Temp) null
Temp++ appearsAddress(Index ; Find ; Body)

else
[]

appearsAddressOne() takesan individual addressand returns the position along Index

if Find matchesalong this addressor the empty list otherwise.This function usesa separate

function to �lter referenceswhich appearat this addressand ordersthem along according to

their x positions.This list is then compared using a normal string comparisonagainstFind . If

the match is found then the referencesare simply �lter ed by Index with the return valuebeing

forced to a valuestate.There will only be a singleposition along Index , becauseof when the

routine is called.

Note that since= expectsa list of valuesnot a singlevaluea singlestring should be passed

into appears() as["Bob"] not simply "Bob" . However, this doesmeanthat the functions cope

equallywell with a list of stringswith the �nal result setconsistingof atomswhich referencea

sub-structure entry with anyof the valuesspeci�ed.

appearsAddressOne(Index ; Find ; Address)
[[[[]; []; "x" ; []; []; " " ; []; "up" ; []]]]) Exp) null
addressFilter (Address)) order (Exp)) String) null
if String = Find

[filter ([[]; Index ; []; []])]
else

[]

The function addressFilter calledabovepassesreferenceswhich match a particular ad-

dress.An addressis a nestedlist in the form of, for example,[[" x" ; 1]; ["y" ; 2]]. This function

needsto recursewith eachiteration �ltering by one property pair. For eachpair, references

passingthe �lter test are passedinto the recursivecall.

6. H ED GEH OG 207

addressFilter (Address)

if length (Address)

Address ! Head) null)
Body) null

Head! Id) null)
Pos) null

if length (Address) = 1

filter ([]; Id ; " = " ; Pos)
else

filter ([]; Id ; " = " ; Pos)) addressFilter (Body)
else

[]

6.9.4 Addrmod

appearsRecur() requiresa function namedaddrmod() which returns a list of addressesfor a

referenceexcluding one or more identities passedasan argument to the function.

This function begins by using the supplied address() function and calling a recursive

routine which removesall occurrencesof the passedidentities. Since this will leavemany

duplicate casesthe unique () function is used. Duplicates appearsince, for example, if the

addressesx = 1; y = 1 and x = 1; y = 2 are usedwith y being excludedthe addressx = 1 will

appeartwice in the output.

addrmod(Exclude)
address()) addrmodRecur(Exclude)) unique ()

addrmodRecur() is a relativelysimple function that for eachproperty pair callsa function

namedaddrmodOne() which will return the pair unlessthe identity of the pair is in the Exclude

list.

addrmodRecur(Exclude)

if length (input)

input ! Head) null)
Body) null

addrmodOne(Exclude) ++ addrmodRecur(Exclude)
else

[]

6. H ED GEH OG 208

addrmodOne() splits the suppliedpair into identity and position and comparesthe identity

againstthe Exclude list. If no match is found the pair is returned.

addrmodOne(Exclude)
Head! Id) null)

Position) null
if [Id] = Exclude

[]
else

input

6.9.5 Highest

In section x5.3.6.1 it wasmentioned that often a sub-structure would be deep in some di-

mensionsuchasyear . A usermaywant to only considerreferencesfor the highestyearvalue.

Note that the referenceswill likely havea year id identity referencinga sub-structure instead

of a year identity and so it is not enough to locate the highest position along the dimension

sincethe order of yearswithin the yearsub-structure is unde�ned with the highest valueyear

being equallypossibleat year = 0, year = 2 or year = 42.

highest () starts by getting a list of all positionsalong an index dimension and passesthis

list to arecursivefunction, highestRecur () which will return the position at which the highest

value appears.If there is a joint highest value all positions with that value will be returned.

When the position(s) havebeenreturned the input is �lter ed for all referenceswhich refer to

the position(s).

The function takesan Index argument which refersto the appropriate index dimension,

in this case“ year ”. The function takesanother identity, Horiz , which de�nes the natural

ordering of the structure, e.g. x for text and n for numbers.

highest (Index ; Horiz)
filter ([]; Index ++ " id " ; []; [])) highestRecur (Index ; Horiz)) Best) null
filter ([]; Index ++ " id " ; " = " ; Best)

highestRecur () worksby recursing,where for eachiteration the headiscompared against

the highest valuefrom the body, Leader. Leader doesnot contain a valuebut one or more

positions referencing values.The getvalue () function is usedto convert from a position to a

list of values.

6. H ED GEH OG 209

If the headis greaterthan Leader the headis returned, if the valuesare equal the headis

addedto Leader and returned, otherwiseLeader is returned.

highestRecur (Index ; Horiz)

if length (input) = 0

[]

elsif length (input) = 1

input
else

input ! Head) null)
Body) null

Body) highestRecur (Index ; Horiz)) Leader) null
Leader) getvalue (Index ; Horiz)) Leadval) null
Head) getvalue (Index ; Horiz)) Headval) null
if Headval > Leadval

[Head]

elsif Headval = Leadval
[Head] ++ Leader

else
Leader

getvalue () is recursiveto processa number of positions.For eachiteration, referencesat

that position are �lter ed and ordered along to form a valuewhich is addedto the result set.

First a function is de�ned to get the numeric valueof a yearbasedon a year id .

getvalue (Index ; Horiz ; Pos)

if length (Pos)

Pos! Head) null)
Body) null

filter ([[]; Index ; " = " ; [Pos]])) A) null
A) order ([[[[]; []; Horiz ; []; []; " " ; []; "up" ; []]]])) B) null
B++ getvalue (Index ; Horiz ; Body)

else
[]

6.10 Conclusion

This chapterhasintr oduced Hedgehog, a languagefor the manipulation of ADS. The devel-

opment of Hedgehog hashelped highlight issuesfor a programming interfaceto an Atomic

6. H ED GEH OG 210

Hypermedia system.Lacking any survey of Hedgehog in use, it is hard to evaluatejust how

usefuland practicalthe languageis. However, the work here haslaid the groundwork for any

ADS-interfacing language.

6.10.1 Further work

One key point for the developmentof Hedgehog is the implementation of an interpreter to

test the practicalusefulnessof the language.Relatedto this is a requirement to addresshow

certain languagefeaturescanbe representedin a practicaldevelopmentformat. For example,

most programming languagescanbe notated in a simple text editor but this is not trivial for

Hedgehog due to the needto be ableto havebranching catenas,underlined statementsetc.

Although many traditional languagessuchasC or Javaare sub-optimal for working with

ADS the sameis not so obviously true for functional languages.These languagessuch as

Haskell or Miranda havestrong list processingcapabilities,and this chapterhasdemonstrated

the need for suchabilities when working with ADS. Further developmentof Hedgehog will

bene�t from closer examination of functional languagesand either being in�uenced by the

largeamount of establishedwork in this areaor perhapsmoving Hedgehog towardsbecoming

more like atraditional functional language.Alternatively, anexistingfunctional languagecould

be extendedto give ADS-manipulation capabilities.

Finally, therehavebeensuggestionshaveHedgehog, or asimilar language,could be useful

not only for Atomic Hypermediabut alsofor working with zzStructures,which aspreviously

discussed(5.4) share somecommon properties with ADS.

211

CH APTER 7

CO N CL U SI O N

Although this thesishas describedthe research asa single story, for theseconclusionsit is

usefulto split the discussioninto two distinct parts. “Modelling hypermediaimplementation”

(MHI) and “Modelling node-lesshypermedia” (MNLH) re�ect the two clausesin the title of

this work.

The �rst of these,MHI, considersapracticalapproachfor the designof expandablehyper-

mediasystems.This areaof research accountsfor the majority of chapter2, and all of chapters

3 and 4, and has also led to a number of publications [7][61][62][63][64][65][73][93],

copiesof which canbe found in Appendix A, along with forthcoming work suchas[15].

The secondpart, MNLH, describesthe work on Atomic Hypermedia in chapter 5 and

Hedgehog in chapter6. Unlike the work in the MHI part, this research hasnot beenstrongly

focusedon practical considerations,but on developing a new way to approach hypermedia

research.

7.1 Modelling hypermedia implementation

Aspreviouslymentioned, the presentationorder of the work doesnot re�ect the development

process(x1.3). However, despitethis `evolutionary' approach the �nal result hasbeena clear

uni-dir ectional dependencybetweenthreecollectionsof results.The �rst collection described

the supporting hypermediatheory (x2). The seconddescribessystemmodels(x3) culminating

in a model namedMeles(x3.6), which is basedon the supporting theory. The �nal collection

describesan applicationnamedGoate (x4) which is basedon the systemmodelling.

A signi�cant part of the theory discussionsfocusedaround the ideaof documents.Whilst

7. CON CL U SI ON 212

other research may describea document in terms of a collection of nodes, the ordering of

content within the document is frequently left unde�ned. This thesisarguesthat the concept

of `document' should be reserved for an ordered composite (x2.8.6). This work has also

describedhow the idea of a `document' can be modelled using the concept of `node'. This

is a useful modelling sinceit reducesthe number of active data-typesin a systemand helps

describethe behaviourof nodeswhen affectedby linking.

The work hasdemonstratedhow the concept of linking is closely tied to that of docu-

ments. In particular how actionssuch as`inclusion' on a node lead to document formation.

The act of inclusion wasconsidered alongsideother linking actionssuchas`traversal'and `re-

placement' (x2.5). Theselinking behaviourswere describedin terms of `subject' and `object',

i.e. that which isaffected,andthe content by which it isaffected(x2.2.5, x2.5.1). This concept

waslater usedduring the developmentof the systemdesignmodels.

The work on modelling link actionsshowedthat the concept of a link end-point should

be separatedfrom the concept of the link activator (x2.7.3). The concept of link activator

wasmodelled under the name`trigger'. Sectionx2.7 describeda generictrigger structure and

discussedhow the conceptof a trigger could be reconciledwith link structures.

Chapter 3 describedthe developmentof modelsusedto guide systemdevelopment.The

discussionof the earlymodelshelpsto describethe considerationspresentat variousstagesof

the research and the discussionsof the shortcoming of eachhelp to understandthe structure

of the �nal model, Meles(x3.6).

Meles is a practical, modular design for the systemdesign. Meles separatesthe storage

of nodes, storage of links, retrieval of nodes, interpretation of linking speci�cation, media

processingand client interfacing. The model supports systemswhich have a variety of the

thesecomponents,so a systembasedon the model should be easilyexpandable.

The model is not simply an arbitrary separationof responsibilities,but includes descrip-

tions of how operationsarecarried out. For example,the logical �ow from initial client request

through to the displayof a complexdocument canbe tracedthrough the design.

Chapter 4 describesGoate, a hypermediasystembasedpartially on the ideaspresentedin

chapters2 and3. Goatehasvaluein severalareas.Firstly, it isaresearch tool which throughout

this work wasusedasaplatform to explore ideasallowing the modelling of both core concepts

and entire systemsaspreviouslydiscussed.

Secondly, Goateisausefultool for implementation of linking languages.The implementa-

7. CON CL U SI ON 213

tion of GHURLE (x4.7.4) and GGoogle (x4.7.3) show that languagescanbe realisedin this

way. Theselanguageshelp to demonstratethe �exibility of the approach asGHURLE uses

�xed linkbasesspeci�ed externally to the content whilst GGoogle usesdynamicqueriesbased

on a speci�cation embeddedin the content.

7.2 Node-less hypermedia

Atomic Hypermedia describedin chapter 5 was initially conceivedasan alternative, if rad-

ical solution to the problem of hypermedia spanswhich crossnode boundaries. However,

from this initial ideaAtomic Hypermediahasgrown into a signi�cantly dif ferent approachto

hypermedia.

Chapter 5 describedhow content can be representedwithout encapsulatingnodes but

with a structure consistingof `atoms', eachone holding a singlecharacter. The overall struc-

ture, Atomic Data Structure, allowsatomsto be placedat multiple locationsalong anarbitrary

number of dimensions.Basedon the singledata-typeof `atom', other typescanbe described,

and thesedata-typesused in turn to form others. From here complex structurescan be de-

scribed.

The powerof Atomic Hypermediacomesfrom the fact that no matter how complexadata-

structure becomes,and how manydimensionsit includes,it is possibleto extract information

at an arbitrary level of granularity, as required. This is possiblesince as any data-structure

ultimately consistsof only atoms,a singleatom-referencing addressingschemecanbe usedin

all cases.

Furthermore, the useof dimensionsto denote membershipof a particular classenables

other behavioursnot easilyachievedwith a node-centric view. For example,within what was

originally a video clip an image may be labelled which can then be used asanother image.

Similarly, within an existing imagea separatelyaddressableimagemaybe labelled.

It is also possibleto link sectionsof content together through the use of re-direction.

This process,similar to that of databasenormalisation, reducesredundancythroughout the

structure.

Whilst chapter 5 describesthe principles of Atomic Hypermedia, it does not describea

way to manipulate this data, since it is envisagedthere are many equally valid waysto do

this. However, as a separateconsideration this work does propose one such approach for

manipulation, Hedgehog, and this is describedin chapter6.

7. CON CL U SI ON 214

Hedgehog is basedon the paradigm of processingcollections of atoms, or more accu-

rately referencesto atoms, in a streambasedmanner. Processinginstructions are formed into

functional blocks which perform a certain task.A greatertaskcan therefore be performed by

joining blockstogether. Hedgehog recognisesthat givenaparticular collection of atomsthere

maybe arequirement to perform severaloperationsin parallelon the collection, later merging

the resultstogether. To this end, Hedgehog featuresthe ability to split and merge collections.

7.3 Fur ther work

This thesishastouched on many �elds and so presentsa rangeof possibleavenuesfor further

research. These issuesare discussedthroughout the thesis,but are collated here for conve-

nience.

There are a few areasof the modelling implementation work that would bene�t from

further development. `Paneoperations', that is the handling of manipulation of contained

areasof a client view, are not adequatelydescribed.For example,whilst it is possibleto model

the linking action of `appear'with the current subject/object form, the method doesnot easily

expandto coverdescriptionssuchasdisappear, move, resizeetc. Initial work suggeststhat the

effective end-points of an activated link include not only the span, but a `pane operation'

descriptionof someform.

Whilst Meles providesa good model for systemswhich support the readingof hyperme-

dias, it doesnot currently model authoring actions.Theseactions include the editing of the

content and the manipulation of the linkbasesheld by the respectiveSources.Further devel-

opment should focuson how theseactionscanbe describedin a common manner, so asnot

breakthe separationbetweenthe constituents.

Goate is currently a useful system,but its usefulnesscan be greatly enhancedby mov-

ing towards full Meles compliance,allowing document formation behaviours.Furthermore,

the move from a focus on HTTP proxying to the view of proxying asjust one possibleim-

plementation environment should be completed, with all of the proxying code moved to an

Environment module. The �exibility of the Meles approach could be demonstratedby the

implementation of Environment modules supporting other client types. Other possibilities

for further work include working on a Goate-to-Goate communicationsprotocol to support

behaviourssuchasusing a 3rd-party Goateserver to interpret a link speci�cation.

Atomic Hypermedia would greatly bene�t from an implementation of the system.The

7. CON CL U SI ON 215

work on MHI usedthe developmentof Goate asa test platform, and asa meansto highlight

issues/shortcomings in the model. It is believedthat asimilarprocessfor Atomic Hypermedia

would help developthe ideasfurther. Also in this areaa standard should be worked on for the

standardisedincorporation of media into Atomic Hypermedia.

Similarly, Hedgehog would bene�t from being implemented. This would allow the lan-

guageitself to be effectivelyevaluatedagainstother methodsof manipulating Atomic Hyper-

media,suchasa classor library for an existing languageor a new languagebasedmore closely

on a particular existing language.

216

References

[1] OpenBSDasprintf . http://www.openbsd.org/cgi- bin/man.cgi?query=asprintf .

[2] R. Akscyn, D. McCracken, and E. Yoder. KMS: a distributed Hypermedia system

for managing knowledge in organizations. In Proceedingof the ACM conferenceon

Hypertext, pages1–20. ACM Press,1987.

[3] K. M. Anderson, R. N. Taylor, and E. J. Whitehead Jr. A critique of

the Open Hypermedia Protocol. Journal of Digital Infor mation, 1(2), 1997.

http://jodi.ecs.soton.ac.uk/Articles/v01/i02/Anderson/ .

[4] M. H. Anderson,J. Nielsen,and H. Rasmussen.A similarity-basedhypertext browser

for readingthe Unix network news. Hypermedia, 1(3):255–265, 1989.

[5] H. Ashman. Theory and practiceof large-scalehypermedia managementsystems. PhD

thesis,RMIT , 1997.

[6] H. Ashman. Relationsmodelling setsof Hypermedia links and navigation. TheCom-

puter Journal, 43(5):345–363, 2000.

[7] H. Ashman,T. Brailsford, D. Martin, A. Moor e, and C. Stewart. Proxy-basedlinking

in an adaptive Web-basedIntegrated Learning Environment. In Proceedingsof the

IADIS e-Societyinternational conference, pages349–355, June2003.

[8] J. Axelsson,B. Epperson,M. Ishikawa,S. McCarron, A. Navarro, and S. Pemberton.

The XHTML 2.0 working draft. http://www.w3.org/TR/xhtml2/ , May 2003. W3C.

[9] M. Bernstein. An apprentice that discovershypertext links. In A. Rizk, N. Streitz,

and J. André, editors, Hypertext: concepts,systemsand applications, pages212–223.

Cambridge University Press,New York, NY, USA, 1992.

REFEREN CES 217

[10] M. Bernstein. Card sharkandThespis:exotic tools for Hypertext narrative. In Proceed-

ingsof thetwelfth ACM conferenceon Hypertext and Hypermedia, pages41–50. ACM

Press,2001.

[11] M. Bernstein. Storyspace1. In Proceedingsof thethir teenthACM conferenceon Hyper-

text and hypermedia, pages172–181. ACM Press,2002.

[12] R. Bird and P. Wadler. Intr oductionto Functional Programming. PrenticeHall, 1998.

[13] M. Boshernitsan and M. Downes. Visual programming languages: A survey.

http://www.cs.berkeley.edu/~maratb/cs263/paper.pdf .

[14] D. F. Brailsford. Separablehyperstructure and delayedlink binding. ACM Computing

Surveys, 31(4es):30, 1999.

[15] T. Brailsford, D. Martin, A. Moor e, C. Stewart, and H. Ashman. Links for learn-

ing: linking in an adaptivelearning environment. AdvancedTechnologyfor Learning,

1(4):221–226, 2004.

[16] C. Brooks, M. S. Mazer, S. Meeks, and J. Miller . Application-speci�c proxy servers

asHTTP streamtransducers.In Proceedingsof the4th Inter national World Wide Web

Conference, pages539–548, December1995.

[17] V. Bush. As we may think. TheAtlantic Monthly, 176(1):101–108, July 1945.

[18] B. Campbell and J. M. Goodman. HAM: a general-purposehypertext abstractma-

chine. In Proceedingof the ACM conferenceon Hypertext, pages21–32. ACM Press,

1987.

[19] L. Carr, W. Hall, and D. De Roure. The evolution of Hypertext link services. ACM

ComputerSurveys., 31(4es):9, 1999.

[20] L. A. Carr, D. C. De Roure, W. Hall, and G. J. Hill. The Distributed Link Service:

A tool for publishers,authors and readers. In Proceedingsof theFourth Inter national

World Wide WebConference, pages647–656, 1995.

[21] J. Clark. XSL transformations (XSLT) version 1.0. http://www.w3.org/TR/xslt ,

November 1999. W3C.

REFEREN CES 218

[22] The ApacheCocoon project. http://cocoon.apache.org/ .

[23] H. Davies,S. Reich, and D. Millar d. A proposalfor a common navigationalhypertext

protocol. In Proceedingsof the 3.5 OpenHypermedia Systemsworking group meeting,

1997.

[24] H. C. Davies, D. E. Millar d, S. Reich, N. Bouvin, K. Grønbæk, P. J. N ürnberg,

L. Sloth, U. K. Wiil, and K. Anderson. Interoperability betweenHypermediasystems:

the standardisation work of the OHSWG. In Proceedingsof thetenth ACM Conference

on Hypertext and Hypermedia: returning to our diverseroots, pages201–202. ACM

Press,1999.

[25] H. Davis. To embed or not to embed.. . . Communicationsof theACM , 38(8):108–

109, 1995.

[26] H. Davis,A. Lewis,andA. Rizk. OHP: A draft proposalfor astandard Open Hyperme-

dia Protocol. In Proceedingsof thesecondinternational workshopon OpenHypermedia

Protocol, pages27–53, 1996.

[27] H. C. Davis. Referential integrity of links in open hypermediasystems.In Proceedings

of theninth ACM conferenceonHypertext and hypermedia : links, objects,time and space

— structurein hypermediasystems, pages207–216. ACM Press,1998.

[28] H. C. Davis. Hypertext link integrity. ACM Computing Surveys, 31(4es):28, 1999.

[29] D. C. De Roure,N. G. Walker, andL. A. Carr. Investigating link serviceinfrastructures.

In Proceedingsof theeleventhACM on Hypertext and hypermedia, pages67–76. ACM

Press,2000.

[30] P. De Bra, G.-J. Houben, and H. Wu. AHAM: a Dexter-basedreferencemodel for

adaptivehypermedia. In Proceedingsof the tenth ACM Conferenceon Hypertext and

Hypermedia : returning to our diverseroots, pages147–156. ACM Press,1999.

[31] S. De Rose,E. Maler, and D. Orchard. XML linking language(XLink) version 1.0.

http://www.w3.org/TR/xlink/ , June2001. W3C.

[32] D. De Roure, L. Carr, W. Hall, and G. Hill. A distributed hypermedia link service. In

Proceedingsof thethir d international workshopon servicesin distributed and networked

environments, pages156–161, June1996.

REFEREN CES 219

[33] D. De Roure,S.El-Beltagy, L. Carr, andW. Hall. A distributed link serviceusingquery

routing. In Proceedingsof the postersessionof the 8th international WWW conference,

May 1999.

[34] R. Fielding, U. Ir vine, J. Gettys, J. Mogul, H. Frystyk, L. Mas-

inter, P. Leach, and T. Berners-Lee. HTTP speci�cations.

http://www.w3c.org/Protocols/Specs.html . W3C.

[35] A. M. Fountain, W. Hall, I. Heath, and H. C. Davis. Microcosm:an open model for

hypermediawith dynamiclinking. In ProceedingsofECHT: Hypertext:Concepts,systems

and applications, pages298–311, 1990.

[36] F. Garzotto, L. Mainetti, and P. Paolini. Adding multimedia collectionsto the Dexter

model. In Proceedingsof the1994ACM EuropeanconferenceonHypermediatechnology,

pages70–80. ACM Press,1994.

[37] The GCC compiler project. http://gcc.gnu.org/ .

[38] Goate. http://www.codebunny.org/research/goate/ .

[39] Google APIs. http://www.google.com/apis/ .

[40] S. Goose, A. Lewis, and H. Davis. OHRA: Towards an open hypermedia reference

architecture and a migration path for existingsystems.Journal of Digital Infor mation,

1(2), 1997. http://jodi.ecs.soton.ac.uk/Articles/v01/i02/Goose/ .

[41] K. Grønbæk. Compositesin a Dexter-basedHypermedia framework. In Proceedings

of the1994 ACM Europeanconferenceon Hypermedia technology, pages59–69. ACM

Press,1994.

[42] K. Grønbæk,N. O. Bouvin, and L. Sloth. Designing Dexter-basedHypermedia ser-

vicesfor the World Wide Web. In Proceedingsof theeighthACM conferenceon Hyper-

text, pages146–156. ACM Press,1997.

[43] K. Grønbæk,L. Sloth, and P. Ørbæk. Webvise:Browserand proxy support for Open

Hypermediastructuring mechanismson the WWW. In Proceedingsof theEighthWorld

Wide WebConference, pages253–268, 1999.

REFEREN CES 220

[44] K. Grønbækand R. H. Trigg. Design issuesfor a Dexter-basedHypermedia system.

In Proceedingsof theACM conferenceonHypertext, pages191–200. ACM Press,1992.

[45] K. Grønbækand R. H. Trigg. Toward a Dexter-basedmodel for open hypermedia:

Unifying embeddedreferencesand link objects. In Proceedingsof thetheseventhACM

conferenceon Hypertext, pages149–160. ACM Press,1996.

[46] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Mor eau, and H. F. Nielsen. SOAP

version1.2 part 1: Messagingframework. http://www.w3.org/TR/soap12- part1/ ,

June2003. W3C.

[47] F. G. Halasz. Re�ections on Notecards: sevenissuesfor the next generation of hy-

permediasystems.In Proceedingof theACM conferenceon Hypertext, pages345–365.

ACM Press,1987.

[48] F. G. Halasz, T. P. Moran, and R. H. Trigg. Notecards in a nutshell. In Proceed-

ingsof theSIGCHI/GI conferenceon Human factorsin computingsystemsand graphics

inter face, pages45–52. ACM Press,1987.

[49] F. G. Halaszand M. Schwartz. The Dexter Hypertext referencemodel. Communica-

tionsof theACM , 37(2):30–39, 1994.

[50] W. Hall, G. Hill, and H. Davis. The Microcosmlink service. In Proceedingsof the�fth

ACM conferenceon Hypertext, pages256–259. ACM Press,1993.

[51] L. Hardman, D. C. A. Bulterman, and G. van Rossum. The Amsterdam hypermedia

model: extending Hypertext to support *r eal* multimedia. Hypermedia, 5(1):47–69,

May 1993.

[52] L. Hardman, D. C. A. Bulterman, and G. van Rossum. Links in hypermedia: the

requirement for context. In Proceedingsof the�fth ACM conferenceonHypertext, pages

183–191. ACM Press,1993.

[53] L. Hardman, P. Schmitz, J. vanOssenbruggen,W. ten Kate,and L. Rutledge. The link

vs. the event: Activating and deactivatingeventsin time-basedhypermedia. TheNew

Reviewof Hypermedia, 6:88–109, 2000.

[54] E. R. Harold and W. S.Means. XML in a nutshell. O'Reilly, 2001.

REFEREN CES 221

[55] Haskell. http://www.haskell.org .

[56] P. Hayesand J. Pepper. Towards an integrated maintenanceadvisor. In Proceedingsof

thesecondannual ACM conferenceonHypertext, pages119–127, New York, NY, USA,

1989. ACM Press.

[57] G. Hill, R. Wilkins, and W. Hall. Open and recon�gurable hypermedia systems:A

�lter -basedmodel. Hypermedia, 5(2):103–118, 1993.

[58] J. J. Leggett and J. L. Schnase.Viewing Dexter with open eyes. Communicationsof

theACM , 37(2):76–86, 1994.

[59] P. H. Lewis, H. C. Davis, S. R. Grif �ths, W. Hall, and R. J. Wilkins. Media-based

navigation with generic links. In Proceedingsof the the seventhACM conferenceon

Hypertext, pages215–223. ACM Press,1996.

[60] C. C. Marshall and I. Frank M. Shipman. Spatial hypertext: designing for change.

Communicationsof theACM , 38(8):88–97, 1995.

[61] D. Martin and H. Ashman.Goate:An infrastructure for new Web linking. In Proceed-

ingsof theOpenHypermediaSystemsWorkshop, pages19–25, 2002.

[62] D. Martin and H. Ashman. Goate:XLink and beyond. In Proceedingsof thethir teenth

ACM conferenceon Hypertext and Hypermedia, pages142–143. ACM Press,2002.

[63] D. Martin, M. Truran, and H. Ashman. Approachesfor cachingwith content altering

HTTP proxies. In Proceedingsof theinternational IEEE ICIT A conference, November

2002.

[64] D. Martin, M. Truran, and H. Ashman. Implementing conceptual linking on

today's web. In Proceedingsof the Ausweb international conference, July 2002.

http://ausweb.scu.edu.au/aw02/papers/edited/truran/ .

[65] D. Martin, M. Truran, andH. Ashman.The end-point isnot enough. In Proceedingsof

the�fteenth ACM conferenceonhypertext and hypermedia, pages128–129. ACM Press,

2004.

[66] H. Maurer. Hyper-G now Hyperwave:The next generationWebsolution. Addison-

Wesley, 1995.

REFEREN CES 222

[67] M. J. McGuf �n and m. c. schraefel. A comparisonof hyperstructures: zzstructures,

mSpaces,and polyarchies. In Proceedingsof the�fteenth ACM conferenceon Hypertext

& hypermedia, pages153–162. ACM Press,August 2004.

[68] N. Meyrowitz. Intermedia: The architecture and construction of an object-oriented

hypermedia systemand applicationsframework. In Conferenceproceedingson Object-

orientedprogrammingsystems,languagesand applications, pages186–201. ACM Press,

1986.

[69] D. E. Millar d, L. Mor eau, H. C. Davis, and S. Reich. FOHM: a fundamental open

hypertext model for investigatinginteroperability betweenhypertext domains. In UK

Conferenceon Hypertext, pages93–102. ACM Press,2000.

[70] A. Moor e and T. Brailsford. Uni�ed hyperstructures for bioinfor matics: Es-

caping the application prison. Journal of Digital Infor mation, 5(1), 2004.

http://jodi.ecs.soton.ac.uk/Articles/v05/i01/Moore/ .

[71] A. Moor e, T. Brailsford, and C. Stewart. Personallytailored teachingin WHURLE us-

ing conditional transclusion.In Proceedingsof thetwelfth ACM conferenceonHypertext

and Hypermedia, pages163–164. ACM Press,2001.

[72] A. Moor e, J.Goulding, T. Brailsford, andH. Ashman.Practicalapplitudes:casestudies

of applicationsof the ZigZag hypermedia system. In Proceedingsof the�fteenth ACM

conferenceon hypertext and hypermedia, pages143–152. ACM Press,2004.

[73] A. Moor e, C. Stewart, D. Martin, T. Brailsford, and H. Ashman. Links for learning:

linking in an adaptivelearning environment. In Proceedingsof the IASTED interna-

tional conferenceon Web-basededucation, pages390–395, 2004.

[74] T. H. Nelson. Complex information processing:a �le structure for the complex, the

changing and the indeterminate. In Proceedingsof the1965 20th national conference,

pages84–100. ACM Press,1965.

[75] T. H. Nelson. Literar y Machines. Mindfull Press,1992.

[76] T. H. Nelson. Managing immensestorage.Bytemagazine, 13(1), January 1998.

REFEREN CES 223

[77] T. H. Nelson. A cosmology for a dif ferent computer universe:Data model, mecha-

nisms,virtual machineand visualizationinfrastructure. Journal of Digital Infor mation,

5(1), 2004. http://jodi.ecs.soton.ac.uk/Articles/v05/i01/Nelson/ .

[78] S. R. Newcomb, N. A. Kipp, and V. T. Newcomb. The “Hytime”: hypermedia/time-

baseddocument structuring language. Communicationsof theACM , 34(11):67–83,

1991.

[79] P. J. Nürnberg and J. J. Leggett. A vision for Open Hy-

permedia Systems. Journal of Digital Infor mation, 1(2), 1997.

http://jodi.ecs.soton.ac.uk/Articles/v01/i02/Nurnberg/ .

[80] ISO 7498, Open System Interconnection model.

http://www.acm.org/sigs/sigcomm/standards/iso_stds/OSI_MODEL/ . ISO.

[81] K. Østerbye and U. K. Wiil. The �ag taxonomy of open hypermedia systems. In

Proceedingsof thetheseventhACM conferenceonHypertext, pages129–139. ACM Press,

1996.

[82] K. R. Page,D. Cruickshank,and D. D. Roure. Its about time: Link streamsascontin-

uous metadata. In Proceedingsof thetwelfth ACM conferenceon Hypertext and Hyper-

media, pages93–102. ACM Press,2001.

[83] Perl. http://www.perl.com .

[84] Privoxy. http://www.privoxy.org/ .

[85] Project Xanadu. http://www.xanadu.com .

[86] A. Rizk and L. Sauter. Multicard: an open hypermedia system. In Proceedingsof the

ACM conferenceon Hypertext, pages4–10. ACM Press,1992.

[87] F. M. Shipman, III, H. Hsieh, P. Maloor, and J. M. Moor e. The visual knowledge

builder: a secondgenerationspatialhypertext. In Proceedingsof thetwelfth ACM con-

ferenceon Hypertext and Hypermedia, pages113–122. ACM Press,2001.

[88] B. Shneiderman and G. Kearsley. Hypertext Hands-On! An Intr oductionto a New Way

of Organizing and AccessingInfor mation. Addison-Wesley, 1989.

REFEREN CES 224

[89] W. Stallings. Data and computercommunications. PrenticeHall, 2000.

[90] N. Streitz, J.Haake,J.Hannemann,A. Lemke,W. Schuler, H. Scḧutt, andM. Thüring.

SEPIA: a cooperativehypermedia authoring environment. In Proceedingsof theACM

conferenceon Hypertext, pages11–22. ACM Press,1992.

[91] R. H. Trigg and K. Grønbæk.Heterogeneity, structure, and CSCW: Threechallenges

for open hypermedia. In Proceedingsof the3rd workshopon OpenHypermedia Systems,

pages131–136, 1997.

[92] R. H. Trigg and K. Grønbæk. A straw model for link traversalin open hypermedia

systems.In Proceedingsof the4th workshopon OpenHypermedia Systems, pages59–62,

1998.

[93] M. Truran, D. Martin, and H. Ashman. Goate, anyone? In Proceedingsof theposter

sessionof the fourteenthACM conferenceon Hypertext and Hypermedia. ACM Press,

2003.

[94] H. Van Dyke Parunak. Don't link me in: setbasedhypermedia for taxonomic reason-

ing. In Proceedingsof thethir d annual ACM conferenceon Hypertext, pages233–242.

ACM Press,1991.

[95] W3C. SGML resources.http://www.w3.org/MarkUp/SGML/ .

[96] W3C. The XPath speci�cation. http://www.w3.org/TR/xpath , 1999.

[97] W3C. The XPointer speci�cation. http://www.w3.org/TR/xptr- xpointer/ , 2002.

[98] M. J. Weal,D. E. Millar d, D. T. Michaelides,and D. C. De Roure. Building narrative

structuresusing context basedlinking. In Proceedingsof thetwelfth ACM conferenceon

Hypertext and Hypermedia, pages37–38. ACM Press,2001.

[99] H. Weinreich, H. Obendorf, and W. Lamersdorf. The look of the link - conceptsfor

the userinterfaceof extendedhyperlinks. In Proceedingsof thetwelfth ACM conference

on Hypertext and Hypermedia, pages19–28. ACM Press,2001.

[100] E. J. Whitehead,Jr. Unifor m comparisonof datamodelsusingcontainment modeling.

In Proceedingsof the thir teenthACM conferenceon Hypertext and hypermedia, pages

182–191. ACM Press,2002.

REFEREN CES 225

[101] U. K. Wiil, D. L. Hicks, and P. J. Nürnberg. Multiple open services:a new approach

to service provision in open hypermedia systems. In Proceedingsof the twelfth ACM

conferenceon Hypertext and Hypermedia, pages83–92. ACM Press,2001.

[102] U. K. Wiil and J. J. Leggett. The HyperDisco approach to open hypermediasystems.

In Proceedingsof the theseventhACM conferenceon Hypertext, pages140–148. ACM

Press,1996.

[103] H. Wu, E. deKort, and P. De Bra. Design issuesfor general-purposeAdaptiveHyper-

media systems.In Proceedingsof thetwelfth ACM conferenceon Hypertext and Hyper-

media, pages141–150. ACM Press,2001.

[104] Y. Yamamoto, K. Nakakoji, and A. Aoki. Spatialhypertext for linear-information au-

thoring: Interaction designand systemdevelopmentbasedon the art designprinciple.

In Proceedingsof the thir teenthACM conferenceon Hypertext and Hypermedia, pages

35–44. ACM Press,2002.

[105] P. T. Zellweger, A. Mangen, and P. Newman. Readingand writing �uid hypertext nar-

ratives. In Proceedingsof thethir teenthACM conferenceon Hypertext and hypermedia,

pages45–54. ACM Press,2002.

226

APPEN D I X A

PU BL I SH ED WO RK

This appendixcontainscopiesof publishedwork arisingfrom this research.

	Title
	Contents
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Hypermedia overview
	1.2 Research focus
	1.3 Structure of the work

	2 Hypermedia behaviours and experiences
	2.1 Overview
	2.2 Terminology
	2.3 Nodes
	2.4 Link structures
	2.5 Link actions
	2.6 Anchors & Spans
	2.7 Triggers
	2.8 Composites & Documents
	2.9 Open Hypermedia
	2.10 Conclusion

	3 Modelling hypermedia implementation
	3.1 Overview
	3.2 Related work
	3.3 High/low model
	3.4 Nottingham model
	3.5 SLIPA
	3.6 Meles
	3.7 Conclusion

	4 Goate
	4.1 Development history
	4.2 Development
	4.3 Goate architecture
	4.4 Operation as a HTTP proxy
	4.5 Retrieve modules
	4.6 Join modules
	4.7 Language modules
	4.8 Environment modules
	4.9 Optimisation
	4.10 Conclusion

	5 Atomic Hypermedia
	5.1 Introduction
	5.2 Atomic Data Structure
	5.3 Atomic Hypermedia
	5.4 ZigZag
	5.5 Conclusion

	6 Hedgehog
	6.1 Overview
	6.2 Data types
	6.3 Structure
	6.4 Filter
	6.5 Orderings
	6.6 Conditionals
	6.7 Altering content
	6.8 Standard functions
	6.9 Examples
	6.10 Conclusion

	7 Conclusion
	7.1 Modelling hypermedia implementation
	7.2 Node-less hypermedia
	7.3 Further work

	References

